TMap® Next Document

TMap® Next

Checklist__Risk_factors_per_quality_characteristic_v1.1

	CHECKLIST 

RISK FACTORS PER QUALITY CHARACTERISTIC


Checklist Risk factors per quality characteristic

In principle, a risk analysis is possible for every quality characteristic, although this is very time consuming. The following checklist indicates specific reasons to consider during the risk analysis for each quality characteristic.

The description states chance of failure and damage, the most important dimensions of risk. Damage can incur in the organization and at customers/buyers of the software or of services or hardware supported by the software. Customers/clients may suffer damage due to faulty software in a variety of ways: using the software itself in an internet application, at an ATM, by getting wrong information from the organization (wrong invoices, and so on), malfunctioning hardware, and so on. If customers/clients blame the organization that produces the software, the organization will incur indirect damage. If the organization compensates their customer’s damage, the organization incurs direct damage.

Below potential damage possibilities are listed both at a generic level (valid for all quality characteristics) and specific for a single quality characteristic.

Also arguments that increase the chance of damage are listed, both generic and specific.

NB Cem Kaner in his book Testing Computer Software mentions 400 often technical failure rate possibilities. [Kaner, 1999]

Generic arguments

Damage

· Image damage of brand and/or company

· Decreased competitive status

· Turnover damage

· Damage claim

· Cost of corrective measures, also additional paperwork

· Employees come to a standstill due to failures, idle time

· Clients can not be supported

· Helpdesk support

· Fines if requirements are not met

· The business process is less efficient or even unsuitable

· Negative image of IT

· Clients outside the organization suffer waiting queues if information supply stagnates

Increased chance of damage

· No requirements

· No attention for quality characteristics in the design

· Insufficient design quality

· Design not followed

· Complexity characterized by: long pieces of coding, concurrent use of many variables, complex logic, many small modules that have to cooperate, concurrent use of more than one computer language. The degree to which complexity is felt is mainly dependent on the skills of the developers.

· Many changes make software vulnerable to failure.

· New technology (programming language, development tool, packaged software for database and network settlement, etc) requires that the developers go through a learning curve. Sometimes the technology is not completely developed and contains errors.

· The size of the development team: the larger the team, the higher the chance for miscommunication.

· The skill of the development team: skilled or starter determines largely the number of defects to be expected.

· Knowledge conservation in the development team. Especially if there is no documentation the discontinuity of developers is a source for defects.

· Time pressure

· Geographic spread of the development team decreases communication and increases failure rate

· Very limited knowledge of existing production systems

· The IT-organization is immature

· There is a large number of interfaces between systems

· Management is based on time and money rather than on quality

· Little attention for test activities (or there are few test activities and / or a non-structured test approach)

· See TMap paragraph 11.2, Risk assessment.

Connectivity

Damage

In the organization:

· Increased maintenance cost due to extra bridges between applications

· Increased failure rate or inconsistencies in data

· Problems with synchronization of systems and data

· Redundant data (as a result of bad connections much data is maintained in “private” systems)

At other organization(s):

· Receives data too late; disturbed business process

Increased chance of damage

· Development without technical or functional architecture or non-conformance to the architecture

· No data-agreements or contracts (protocol for interfaces misses)

· No data ownership

· Many different (technical) platforms

Continuity (reliability)

Damage

In the organization:

· Loss of turnover

· Reconstruction cost

· Extra back-up facilities need to be put in place to insure continuous operation (beforehand or afterwards)

· Extra system management costs / increased staff

At other organization(s):

· Claims

· Dissatisfaction

Increased chance of damage

· No attention for memory management (memory leak)

· Different versions of software on the desktops (dll versions)

· No insight in the limitations (potential bottlenecks) of the system

· No back-up and restore provisions (concerning recovery)

· Mainly “fat” server architecture in place (limited possibilities for continuation via decentralised processing)

· Software running 24 hour / 7 days a week

· Many maintenance releases

· No security measures against Denial-of-services attack

Data controllability

Damage

In the organization:

· No compliance to accountancy requirements

· Defects in financial accountability possible

· Recovery time is lengthened

· Data-inconsistency possible (potentially without being noticed)

At other organization(s):

· Erroneous data is received

Increased chance of damage

· No communication with finance (i.e. accountants, system controllers, EDP auditors)

· No use of hash totals and / or check-sums

· No data-tracing / labelling (date and time-labels added to records)

Effectiveness

Damage

In the organization:

· Lower productivity

· Employee dissatisfaction and turnover

At other organization(s):

· Unusable system leads to abortion of transactions and ultimately non-use of the system

Increased chance of damage

· Client/user not involved in design of the 'interface'

· Clients/users are not used to work with automated systems

· There is a (relatively) large number of functions in the application (many buttons, overly full and complex screens, etc.)

· There is a large number of data fields per screen

· Old systems (old hardware, architecture, applications, operating software, etc.)

Efficiency

Damage

In the organization:

· Increased use of scarce, expensive computer resources: CPU, network, database channels (IO-time)

At other organization(s):

· Could lead to bad performance

Increased chance of damage

· Little experience of developers with technical architecture components

Flexibility

Damage

In the organization:

· Maintenance costs increase as a result of implementing and testing many changes

· User is very dependent of the system

At other organization(s):

· Not applicable 

Increased chance of damage

· Not anticipated in the design

Functionality

Damage

In the organization:

· Business process not supported

· Extra manual operation needed

· Extra workaround needed

· Extra resources needed

· Erroneous calculations

At other organization(s):

· The same as with the organization if data is communicated

Increased chance of damage

· See generic listing

Infrastructure (suitability of)

Damage

In the organization:

· Connecting the software to the production infrastructure requires more effort

· Upgrades of infrastructure components induce extra maintenance activity

At other organization(s):

· Not applicable 

Increased chance of damage

· (Anticipated) increase in system usage (more users ,more actions)

Maintainability

This quality characteristic mainly is important for testing if the organization uses the Total Cost of Ownership (TCO) concept (= conscious balancing between costs of development / quality of software / maintenance costs).

Damage

In the organization:

· Unstructured software induces high maintenance costs

· Unnecessary long repair time 

· Timely actions on amendments to laws or new social security regulations is not possible

At other organization(s):

· Not applicable 

Increased chance of damage

· No standards

· No compliance to standards

· I.e. C++ is relatively unfriendly towards maintenance [Les Hatton 19xx])

· Many legacy systems

· Responsibility for maintenance with other department then the development department

· Operate under high time pressure (structure and maintenance require investment of time and money)

· Bad system documentation

Manageability

Damage

In the organization:

· Extra system management effort

· Waiting time if the management cannot take quick action after calamities

At other organization(s):

· Not applicable 

Increased chance of damage

· No commitment in the project from system managers

· No requirements or acceptance criteria from system managers

· Very limited insight of the system managers in the use of the system

· No or minimal configuration management

· No insight in operational costs

Performance

Damage

In the organization:

· Low productivity, both in online and in batch (night shift not completed)

· Extra infrastructure needed

At other organization(s):

· Customers/clients leave (the application)

Increased chance of damage

· New technology or big release of technology

· Process large volumes of data, large in relation to standard volumes for the used infrastructural components

· Infrastructure not suitable

· Infrastructure cannot be enhanced properly

· No insight in present and future use

Portability

Damage

In the organization:

· Extra costs for upgrade to other platform (hardware or operating system)

· No flexibility towards new platform releases (in the case of packaged software)

At other organization(s):

· Connection to system is not possible

Increased chance of damage

· Many coupled systems processed on old platforms (low portability of interfaces, which also limit system flexibility)

· Extensive knowledge of specific platforms (stick with actual situation, urge to look at new developments and flexibility is low)

· Little generic knowledge of platforms

Reusability

Reusability is of importance only for those organizations that really apply reuse of products/components.

Damage

In the organization:

· Enhancement of systems becomes more expensive

At other organization(s):

· Not applicable

Increased chance of damage

· Unstructured application design

· Bad documentation

· Island organization

· Flawed knowledge management

· Components from different manufacturers

Security

Damage

In the organization:

· Vanished and / or damaged files

· Revealed data: i.e. produce new credit cards, violation of confidentiality of data on behalf of competitors

· Violation of privacy regulations

· Inconsistent database(s) (security also regulates the authorization of input of data in systems)


At other organization(s):

· Infect with viruses, i.e. client organizations

· Violation of privacy regulations

Increased chance of damage

· System access to the outside world, i.e. through the public network (internet)

· Uncontrolled access possibilities

· No use of enciphering

· Understaffed system control department as a result of which security leak blocking patches can not be installed

· Theft of identification (code and / or pass) and password

· No anti-virus measurements

· No security policy and architecture

Suitability

Damage

In the organization:

· (Exceptional) administrative procedures are not supported by system (for instance, correction after a correction can not be performed), causing labor-intensive workarounds or incorrect data in system

· Timely availability of data cannot be realized (finding the right John Doe in NYC)

· Worst case scenario: the system cannot be implemented at all

At other organization(s):

· Not applicable

Increased chance of damage

· Form design and screen/report design are performed in separated routes with little or no communication

· No analysis in the design phase on the access path to data/information

· Flawed relationship between system design and description of administrative procedures and business processes

Testability

Damage

In the organization:

· Software quality is low

· Many disturbances

· Test becomes more expensive and sometimes even impossible

At other organization(s):

· Not applicable

Increased chance of damage

· No design standards

· Bad system documentation

User friendliness

Damage

In the organization:

· Lower productivity

· Longer learning curve / extra training costs

· Higher workload helpdesk / application managers

· Increased RSI possibility

At other organization(s):

· If competitor is available, the friendlier option will be chosen

Increased chance of damage

· User not involved in interface design

· No style guide available for the company

· Little discipline in construction activities: standards not used, i.e. windows standard OK-button on the left, Cancel-button on the right is turned around.

Copyright Sogeti Nederland B.V.©, based in Vianen, the Netherlands.
This work (or any part thereof) may not be reproduced and/or published (for whatever purpose) in print, photocopy, microfilm, audio tape, electronically or in any other way whatsoever without prior written permission from Sogeti Nederland B.V. (Sogeti). 

TMap is a registered trademark of Sogeti Nederland B.V.

Sogeti Nederland B.V.
Fout! Onbekende naam voor documenteigenschap.
II
Fout! Onbekende naam voor documenteigenschap.

