
Checklist Test design techniques

2Data combination test (DCoT)


2Data cycle test (DCyT)


2Decision table test (DTT)


2Elementary comparison test (ECT)


2Error guessing (EG)


3Exploratory Testing (ET)


3Process cycle test (PCT))


3Real life test (RLT)


4Semantic test (SEM)


4Syntactic test (SYN)


5Use case test (UCT)





Data combination test (DCoT)
The data combination test is a versatile technique for the testing of functionality both at detail level and at overall system level. For the DCoT, no specific test basis is required. All types of information on the functionality of the system are usable:

· Formal system documentation, such as functional design, logical data model and requirements

· Informal documentation, such as manuals, folders, pre-surveys and memos

· Domain expertise that is not documented, but resides ‘in the experts’ heads’.

Data cycle test (DCyT)

The primary aim of the data cycle test is not to trace functional defects in individual functions, but to find integration defects. The test focuses on the link between various functions and the way in which they deal with communal data. The DCyT is most effective if the functionality of the individual functions has already been sufficiently tested. The most important test basis is the CRUD matrix and a description of the applicable integrity rules. If this matrix is not present, it must be created to enable the drafting of the test design within the framework of the data cycle test. The following checklist can be used to check the test basis for the data cycle test:

· Is a CRUD matrix present?

· Can every entity be entered, viewed, changed, and deleted?

· Is it clear in which function(s) an entity can be entered, viewed, changed, or deleted?

· Are all entities described?

· Is there an entity diagram (Entity Relationship Diagram, ERD)?

· Have the relationships between the various entities been described?

· Have the referential relation checks for the relations been described?

Decision table test (DTT)

The decision table test is a thorough technique for the testing of detail functionality. The required test basis contains conditions or decision tables. The type and structure of this test basis is of minor importance to the application of the decision table test technique. The decision table test is aimed at the thorough coverage of the conditions and not at combining functional paths. The following checklist can be used to check the design specifications:

· Are the conditions that influence the process clearly recognizable and have these been described?

· Is the output of the process clear and is it possible to predict results?

Elementary comparison test (ECT)

The elementary comparison test is a thorough technique for the detailed testing of the functionality. The necessary test basis is pseudo-code or a comparable specification in which the decision points and functional paths are worked out in detail and structurally. The ECT aims at thorough coverage of the decision points and not at the combining of functional paths. With respect to the elementary comparison test, the following checklist can be used to check the specifications:

· Has the processing method been described in such a way that the various functional paths can be recognized?

· Is it clear under which conditions each functional path must be taken?

· Has processing been described unambiguously, including input and output?

· Has processing been described for each input item?

Error guessing (EG)

A specific review on certain aspects of the test basis is not necessary in order to use the error guessing test technique. As with exploratory testing error guessing is rather difficult to line up with the other test design techniques. It is not based on any of the basic techniques. It is important that a thorough understanding of the (sub) system to be tested can be obtained from the documentation. This insight can also be gained from carrying out structured tests in connection with error guessing.

Exploratory Testing (ET)

Exploratory testing is rather difficult to line up with the other test design techniques. It is not based on any of the described basic techniques, it leaves a free choice of basic techniques to be applied and it provides no guaranteed coverage. Exploratory testing is often associated with testing in the absence of a formal test basis, such as a functional design. However, this is not necessarily true. It is entirely possible to apply it with a well-described system. Having said that, the technique lends itself very well to situations in which no described test basis is present. Exploratory testing puts less emphasis on a described test basis and more on other ways of assessing the adequacy of the test object, such as by familiarisation with the system in the course of the test execution.

Process cycle test (PCT))

The process cycle test is a technique that is applied in particular to the testing of the quality characteristic of suitability (integration between the administrative organisation and the automated information system). The test basis should contain structured information on the required system behaviour in the form of paths and decision points. The test basis for the process cycle test consists mainly of descriptions of procedures and related forms. Preferably, flow charts should be added to the procedure descriptions. The following checklist can be used to check the procedure descriptions present:

· Have all manual procedures to be executed by users been described?

· Has the responsibility as well as authority for each manual task been described?

· Has a description been made of the individual tasks?

· Have the security aspects of this procedure been described?

· Is the “triggering event” clearly indicated? (In other words, when should the procedure be started?)

· Has it been indicated which data (forms) are to be used and what their source is?

· Have the activities to be carried out been described, including exceptions and checks?

· Is the result of every procedure clear?

· Have the various decision points been described, including any related conditions?

· Has a distinction been made between end user procedures and system user procedures?

· Have the relationships between the automated and the non-automated part of the information system been described?

· Is the (draft) user manual available?

Real life test (RLT)

With the real life test, it is not the intention to test the system behaviour in separate situations, but to simulate the realistic usage of the system in a statistically responsible way. This test mainly focuses on characteristics, such as effectivity, connectivity, continuity and performance of the system under test. To be able to test whether a system can handle realistic usage of it, that usage should be somehow specified. This also serves as a test basis and, in this context, is often referred to as the profile. The two most common types are: operational profile and load profile. The following questions may constitute an explicit part of the review within the framework of the real life test:

· Has the expected frequency of use been described on a function level?

· Has it been described for each type of user which functions may be carried out?

· Has it been described for each function when it will be used (daily, weekly, annually, daytime, evening)?

· Is there insight in the relationship between the various batch procedures across the (sub) systems?

· Has the configuration for the production environment been described (hardware, network, system software, DBMS, etc.)?

· Have specific requirements been set for the performance of online functionality?

· Is a distinction being made between the response time when starting up a function and the screen change within a function?

· Have specific performance requirements been set for data retrieval and manipulation?

· Have specific performance requirements been set for batch functionality?

· Have specific requirements been set for memory usage?

· Are there any requirements for the number of database calls per transaction?

· Are there any requirements for the maximum page and buffer sizes?

· Are there any requirements for the size of the application and/or the database?

Semantic test (SEM)

The test basis consists of the semantic rules that specify what a datum should comply with in order to be accepted by the system as valid input. Semantic rules are connected with the relationships between data. These relationships may be between the data within a screen, between data on various screens and between input data and existing data in the database. Semantic rules may be established in various documents, but are usually described in: functional specifications of the relevant function or input screen and in the business rules that apply to the functions overall. The following checklist can be used to check the specifications:

· Have any standards for error handling been described at (sub) system level?

· Have the input checks (in particular the relation checks) - including any related error message - been described as part of the function description and can these be implemented?

· Have any specific requirements been set for access security of functions and/or data?

· Have any user profiles been described with regard to security?

· Has it been described which requirements are set for identification (user ID) and authentication (password)?

Syntactic test (SYN)

The test basis for the syntactic test consists of the syntactic rules, which specify how an attribute should comply in order to be accepted as valid input/output by the system. These rules actually describe the value domain for the relevant attribute. If a value outside this domain is offered for the attribute, the system should discontinue the processing in a controlled manner – usually with an error message. Syntactic rules may be established in various documents, but they are normally described in: the ‘data dictionary’ and other data models, in which the characteristics of all the data are described and in the functional specifications of the relevant function or input screen, containing the specific requirements in respect of the attributes. The following checklist can be used:

· Have any applicable standards been described at system level?

· Have any applicable standards been described at subsystem level?

· Have the layouts of the screens, menus and dialogs been described?
In this context, has any attention been given to the following aspects:

· field length of the items;

· location of items on the screen;

· distinction between input and output items;

· primary input checks (not resulting from domain definition);

· error handling;

· mandatory and non-mandatory items;

· possible function keys, help screens and selections?

· Have the “screen items” and/or attributes been included in the data model?

· Have the types (numeric, alphanumeric, date) and the domains of the input and output data been described?

· Are the specified mandatory and non-mandatory items consistent with the options from the data model?

· Do the described screen layouts comply with the standards?

· Have the layouts of the reports been described?
In this context, has any attention been given to the following aspects:

· field length of the items;

· location of items in the report?

· Have the “report items” and/or attributes been included in the data model?

· Do the described report layouts comply with the standards?

Use case test (UCT)

The detail content of a checklist for determining whether a use case is usable for the 

application of the use case test depends on the way in which a use case is described. 

Below are some checks that can be used as a basis for creating a checklist:

· Is the (standard for the project/organization) use case template filled in completely?

· Is the use case diagram available?

· Is the use case a separate task in itself?

· Is the aim of the use case clear?

· Is it clear for which actors the use case is intended?

· Does the use case relate to the functionality (and not to the screens sequence)?

· Have all the foreseen alternative possibilities been described?

· Have all the known exceptions been described?

· Does the use case contain a complete step-by-step plan?

· Has each step in the scenario(s) been clearly, unambiguously and completely described?

· Are all the actors and steps cited in the use case relevant to the execution of the task?

· Are the described steps executable?

· Is the result of the steps verifiable?

· Do the pre- and post conditions correspond with the use case?


