

TMAP®:

High-performance quality engineering

Syllabus

Version 1.4

Released 15 August 2024

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 2

Copyright notice

Copyright © Sogeti Nederland B.V. 2024. All rights reserved.

This document may be copied in its entirety, or extracts made, if the source is acknowledged.

▪ Any individual or training provider may use this syllabus as the basis for a training course if

Sogeti is acknowledged as the copyright owner and the source of the syllabus.

▪ Any individual or group of individuals may use this syllabus as the basis for articles, books, or

other derivative writings if Sogeti is acknowledged as the copyright owner and the source of the

syllabus.

TMAP® is a registered trademark of Sogeti Nederland B.V.

Revision history

Version Date Author Remarks

0.1 20 July 2020 Bert Linker Initial version

0.3 03 August 2020 Rik Marselis Worked out Learning Objectives

0.4 12 August 2020 Bert Linker Internal review

0.5 28 Augustus 2020 Bert Linker Second internal review

0.6 01 September 2020 Bert Linker Change requests by exercises-team

0.7 9 October 2020
Bert Linker &

Rik Marselis
Integrated subjects of chapter 7

0.8 16 October 2020
Bert Linker &

Rik Marselis
Version for review by SIG members

0.9 18-December-2020
Bert Linker &

Rik Marselis
Basis for pilot-training-course

0.95 12 May 2021

Wouter Ruigrok,

Guido Nelissen &

Rik Marselis

Changed order of some LO’s in the

course based on feedback from pilot

course

1.0 8 July 2021 Rik Marselis Final version

1.3 23 December 2022 Rik Marselis
Yearly update

(note: 1.1 and 1.2 were skipped)

1.4 15 August 2024 Rik Marselis Minor update

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 3

Table of Contents

Table of Contents .. 3

0. Introduction to this syllabus .. 5

1. Session 1 ... 12

2. Session 2 ... 15

3. Session 3 ... 18

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 4

4. Session 4 ... 21

5. Session 5 ... 24

6. Session 6 ... 27

7. Description of additional subjects .. 29

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 5

0. Introduction to this syllabus

 TMAP®: Quality engineering certification scheme

The TMAP® certification scheme supports people involved in IT delivery in extending their knowledge

and skills, to empower them to play their part in delivering business value for their organization and

its customers and other relations.

The TMAP® book “Quality for DevOps teams” (2020, 3rd edition 2022) is the foundation of the TMAP®

body of knowledge. The website www.TMAP.net contains most knowledge from the book and many

additional items such as downloadable templates and the TMAP® glossary (in 6 languages).

In today’s IT world cross-functional teams are expected to deliver business value with the right quality

at speed. This requires high-performance IT delivery models such as DevOps and Scrum, which may

be extended to a hybrid IT delivery model such as the Scaled Agile framework (SAFe®).

The TMAP® body of knowledge for quality engineering & testing supports working towards built-in

quality and takes the need for quality in products, processes and people far beyond just testing.

 Purpose of this syllabus

The training course “TMAP®: High-performance quality engineering” focuses on the knowledge

and skills that professionals need to perform operational quality engineering & testing activities. It is

all about delivering software – which will generate business value – at the right time with the desired

quality!

This syllabus is the basis for the training course “TMAP®: High-performance quality engineering”

and provides directions for the associated examination and certification.

This is a training course consisting of six sessions. Every session takes 3 hours (excluding breaks).

There is a separate 40-questions exam of 1.5-hours.

 Target audience and prerequisites for candidates

This training course is for all people working in or with high-performance IT delivery teams (such as

DevOps and Scrum) that are responsible for or heavily involved in quality engineering such as QA

professionals, testers and operations people. Other relevant roles include business analysts, product

owners, developers, quality engineers, users, scrum masters, agile coaches, release train engineers,

etc.

The candidates are expected to have basic IT knowledge and experience. There is no required previous

certification, but attendees are expected to have the knowledge about and/or experience in the

subjects of the training course “TMAP®: Quality for cross-functional teams”, so this certification

is highly recommended. Some subjects of that training course will return in this course, either to be

elaborated on in more detail, or as a quick recap as the foundation for new subjects.

 Format of this training course and syllabus

The training course consists of 6 sessions with a minimum of 3 hours (that is 18 contact hours in

total). The number of hours mentioned is excluding homework (such as self-study), logistical

preparation of the exam and breaks.

http://www.tmap.net/

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 6

Candidates must prepare to spend about 5 to 15 hours of individual study and preparation for the

exam.

The order of chapters and sections in this syllabus is according to the sequence of the training course,

which gives a mix of theoretical and practical subjects. Every training session is a separate chapter in

this syllabus and the sections each cover a learning objective.

Chapter 7 of this syllabus contains supporting knowledge from the TMAP body of knowledge website,

which is additional to what is described in the TMAP book “Quality for DevOps teams”.

 Learning objectives and K-levels explained

Learning objectives (LOs) are brief statements that describe what you are expected to know after

studying each subject. The relevant information for the learning objectives can be found in the TMAP

book “Quality for DevOps teams” and in chapter 7 of this syllabus.

With each LO there is a reference to the relevant chapter(s) or section(s). The LOs are used to create

the examination for achieving the “TMAP®: High-performance quality engineering” certification.

Each learning objective has a corresponding cognitive level of knowledge (K-level). These K-levels,

based on Bloom’s modified taxonomy, are as follows:

▪ K1: Remember (knowledge). The candidate should remember or recognize a term or a concept.

▪ K2: Understand (comprehension). The candidate should select an explanation for a statement

related to the question subject.

Examples are: The candidate… can explain, recognizes examples related to the subject,

understands, is able to recite, is aware of, can indicate, can distinguish.

▪ K3: Apply (application). The candidate should select the correct application of a concept or

technique and apply it to a given context.

Examples are: The candidate… can relate, can enumerate, can select, can compose, can identify,

is able to apply, can assign, can propose.

An overview of the learning objectives for this certification and their corresponding K-levels is given

in the next section.

 Learning objectives and K-levels for this certification

The literature referred to in the last column of the table below, are the TMAP book “Quality for

DevOps teams” (3rd edition 2022) and chapter 7 of this syllabus.

Learning objectives in the order in which the

subjects appear in the book Quality for DevOps

teams.

K-

level

Section

in this

syllabus

Literature in the

book or syllabus

The VOICE model

LO01 The VOICE model of business delivery and IT

delivery

K2 § 1.1 Ch 3

IT delivery models

LO02 IT delivery models K1 § 1.4 Ch 7, Ch 9 intro;

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 7

Learning objectives in the order in which the

subjects appear in the book Quality for DevOps

teams.

K-

level

Section

in this

syllabus

Literature in the

book or syllabus

LO03 Scrum K1 § 1.5 § 9.1

LO04 DevOps K1 § 1.6 § 1.1, § 9.2 intro,

§ 9.2.1, § 9.2.2

Continuous quality engineering

LO05 Cross-functional teams K2 § 5.4 Ch 2 introduction;

§ 2.2 introduction,

§ 2.4, § 16.1

CI/CD pipelines and tooling

LO06 CI/CD pipeline K2 § 2.3 § 6.1; § 6.2;

§ 6.3 intro, § 9.2.4

LO07 Capabilities K2 § 2.4 § 6.3; § 6.4

QA & testing topics

LO08 Introduction to Performing QA & testing topics K2 § 1.3 Ch 11; Ch 13

LO09 Monitoring & control K3 § 2.6 § 4.1, Ch 17;

§ 35.9

LO10 Reporting & alerting K3 § 2.7 § 5.4, § 17.1.5

Ch 19

LO11 Infrastructure K3 § 2.5 Ch 22,

syllabus § 7.1

LO12 Metrics K3 § 6.5 Ch 24 through

§ 24.4

LO13 Continuous improvement K3 § 6.6 Ch 25 intro,

§ 25.2.4

LO14 Quality Risk Analysis & Test Strategy

(and link this to the voice model)

K3 § 1.8 § 5.2.1, § 5.2.2,

Ch 26;

Ch 35 introduction

LO15 Acceptance criteria K3 § 1.10 § 5.6; Ch 27;

§ 35.2.2

LO16 Reviewing K3 § 5.2 Ch 29; § 35.2.1,

§ 35.6

LO17 Pull requests K3 § 5.3 § 29.1.1.1

LO18 Test data management K3 § 6.7 Ch 31

LO19 Automation K2 § 3.5 Ch 32 intro, § 32.2,

§ 32.3, § 32.6

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 8

Learning objectives in the order in which the

subjects appear in the book Quality for DevOps

teams.

K-

level

Section

in this

syllabus

Literature in the

book or syllabus

LO20 Test execution K3 § 6.2 Ch 33

LO21 Investigate & assess outcome K3 § 6.3 Ch 34

Quality measures and skills

LO22 Quality measures K2 § 1.7 Ch 28

LO23 Specification and Example K3 § 1.9 § 35.2

LO24 Test-driven development & Spec. and example K2 § 3.2 § 35.3,

syllabus § 7.3

LO25 Feature toggles K2 § 6.4 § 35.8

Test varieties

LO27 Test varieties K2 § 5.1 Ch 37

LO28 Quality characteristic Maintainability K2 § 4.7 Ch 41

LO29 Mutation testing tests the tests K3 § 3.7 Ch 42

Test design

LO30 Selecting and combining approaches and

techniques

K2 § 6.1 § 45.6

Coverage-based testing

LO31 Process-oriented test design overview K2 § 3.8 § 45.2

LO32 State transition testing K3 § 3.9 § 45.2,

syllabus § 7.6

LO33 Code coverage K2 § 3.6 § 46.8

LO34 Condition-oriented test design overview K2 § 4.1 § 45.3,

§ 46.4 introduction

LO35 Condition Coverage (CC), Decision Coverage

(DC), Condition Decision Coverage (CDC) &

Multiple Condition Coverage (MCC)

K1 § 4.2 § 46.4.2, § 46.4.3,

§ 46.4.5

LO36 Modified Condition Decision Coverage (MCDC) K3 § 4.3 § 46.4.2, § 46.4.4,

syllabus § 7.7 intro,

syllabus § 7.7.1

LO37 Semantic Test K3 § 4.4 § 46.4.1, § 46.4.4,

syllabus § 7.7.2

LO38 Elementary Comparison Test K3 § 4.5 § 46.4.1, § 46.4.4,

syllabus § 7.7.3

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 9

Learning objectives in the order in which the

subjects appear in the book Quality for DevOps

teams.

K-

level

Section

in this

syllabus

Literature in the

book or syllabus

LO39 Data-oriented test design overview K2 § 5.5 § 45.4

LO40 Equivalence partitioning K1 § 5.6 § 46.5

LO41 Boundary Value Analysis K1 § 5.7 § 46.5

LO42 Data Combination Test (including EP, BVA and

Pairwise)

K3 § 5.8 § 46.6

Experience-based testing

LO43 Experience-based testing overview K1 § 2.1 § 43.4, § 47.1

LO44 Checklist K3 § 2.2 § 29.1.1.1; § 46.7,

§ 47.2

Quality characteristics

LO45 Quality characteristics and non-functional

testing

K2 § 4.6 Appendix

Terminology

LO46 Terms relevant to quality and testing K1 § 1.2 Ch1 introduction

§ 5.5; § 18.3

Additional Subjects

LO47 Static Code Analysis with tooling K2 § 3.4 § 6.1,

Syllabus § 7.4

LO48 Clean architecture (quality aspects) K2 § 3.1 Syllabus § 7.2

LO49 Unit testing principles K2 § 3.3 Syllabus § 7.5

Note: LO26 had been discarded, the number is not in use.

 The TMAP®: High-performance quality engineering - exam

The format of the exam is multiple choice. There are 40 questions. There are no explicit questions

regarding K1 learning objectives. Each correctly answered question for a learning objective at K2-level

gives 1 point, at K3-level it gives 2 points. There are 20 K2 questions and 20 K3 questions so in total

60 points can be gained. To pass the exam, at least 66% of the points (that is 40 points) must be

gained.

The exams and certificates are provided by the independent exam provider iSQI.

For more information about exams please visit:

www.isqi.org or www.TMAPcert.com.

http://www.isqi.org/
http://www.tmapcert.com/

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 10

 Brief introduction to the other TMAP certifications

There are three other certifications in the TMAP certification scheme, which are briefly described below.

Many people are working in, or are related to, a high-performance IT delivery team, such as in DevOps

or Scrum. In the training course “TMAP®: Quality for cross-functional teams” these people will

acquire the required knowledge and skills that are important for building quality in their IT system

and gathering information necessary to establish confidence that the pursued business value can be

achieved. It is a 3-day training course with a 30-questions exam of 1-hour.

Organizing QA & testing requires orchestrating, arranging, planning, preparing and controlling the

activities. The training course “TMAP®: Organizing built-in quality at scale” enables professionals

that are responsible for organizing QA & testing to acquire necessary knowledge and skills to enable

teams to achieve this. It is a 3-day training course with a 40-questions exam of 1.5 hours.

Accepting a new or changed implementation of an ERP system (for example using SAP) requires quality

engineering and testing knowledge and skills from the businesspeople, key-users, maintenance staff

and operations personnel involved in such acceptance. The training course and certification

“TMAP®: Quality engineering for SAP” enables the participants to acquire the knowledge and skills

to participate in such acceptance processes. It is a 2-day training course with a 25-questions exam of

1 hour.

 Accreditation of training providers

Training providers that want to prepare candidates for the exam will need to acquire accreditation

from iSQI. For more information please contact TMAP@iSQI.org.

Training providers may choose between creating their own material and having it accredited through

iSQI or licensing the standard training material through iSQI.

mailto:TMAP@iSQI.org

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 11

 Literature

Exam literature:

▪ The TMAP book “Quality for DevOps teams” (ISBN 978-90-75414-89-9), available on

www.ict-books.com and other bookstores, both in paper and ePub version.

▪ TMAP glossary: https://www.tmap.net/page/tmap-glossary-online.

▪ Descriptions in chapter 7 of this syllabus, based on building blocks on www.tmap.net.

Note: for the exam, texts in this syllabus supersede texts on the website.

Additional literature:

▪ The TMAP body of knowledge website – www.tmap.net

Other additional literature (specifically for trainers to acquire more in-depth knowledge):

▪ The Agile Manifesto – www.agilemanifesto.org

▪ The Scrum Guide – www.scrumguides.org

▪ ISO25010 - www.iso.org/standard/35733.html

▪ Also please refer to the references in the TMAP book “Quality for DevOps teams”.

 Acknowledgements

This syllabus was created by a diverse team. We would like to thank the following people (in no

particular order) for their contributions in writing and reviewing this document:

Sogeti and Capgemini people: Eveline Moolenaars, Anja Leijsen, Berend van Veenendaal, Bert Linker,

Dennis Geurts, Guido Nelissen, Koen Roos, Mark van der Walle, Othmar Hawker, Ralph Klomp, Richard

Pommee, Rik Marselis, Ugur Eksi, Wouter Ruigrok, André van Pelt, Jolene Persoon, Henri Davids,

Martin Gijsen, Daniël Venhuizen, Ralph van der Ven, Anders Larsen and Maarten Diederik.

iSQI people: Stephan Goericke, Erika Paasche, Corinna Flemming - Vogt, Anke Fransen, Valida

Saronjic.

TMAP Special Interest Group members: Cees van Barneveld, Bruno Lepretre, Leo van der Aalst, Okan

Cakmak, Rob Flier, Guido Dulos, Gitte Ottosen and Daisy Fischlein Steffensen.

http://www.ict-books.com/
https://www.tmap.net/page/tmap-glossary-online
http://www.tmap.net/
http://www.tmap.net/
http://www.agilemanifesto.org/
http://www.scrumguides.org/
http://www.iso.org/standard/35733.html

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 12

1. Session 1

Learning objectives
LO01, LO02, LO03, LO04, LO08, LO14, LO15, LO22, LO23, LO46.

 The VOICE model of business delivery and IT delivery (LO01; K2)

High-performance IT delivery teams (such as in Scrum and DevOps) use the VOICE model as a

foundation to structure and organize their work.

The candidate can give a description of the VOICE model and knows that it’s an acronym of Value,

Objectives, Indicators, Confidence and Experience.

The candidate can explain why “Value” and “Objectives” are vital starting points for IT delivery.

Book: chapter 3.

 Terms relevant to quality and testing (LO46; K1)

High-performance IT delivery, Quality, Static testing, Dynamic testing, Error, Fault, Failure, Incident,

Problem, Anomaly and Defect.

The candidate has knowledge of these terms.

Book: Chapter 1 introduction, section 5.5, section 18.3.

 Introduction to Performing QA & testing topics (LO08; K2)

Every IT delivery model, framework, mindset, organization etc. has its own development approach,

workflow, phases, roles, work products and/or activities. We defined a set of generic QA & testing

activities – the so-called “topics” –, which are applicable – in one way or another – to all these

different development approaches.

The candidate understands that there are two overarching groups: Organizing topics and Performing

topics.

The candidate is able to describe the performing topics.

Book: chapter 11, chapter 13.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 13

 IT delivery models (LO02; K1)

An IT delivery model is a conceptual framework which supports a software development process and

describes all assets and competencies. We distinguish three groups of IT delivery models: Sequential

IT delivery, High-performance IT delivery and Hybrid IT delivery.

The candidate has knowledge of the groups of IT delivery models.

Book: chapter 7, chapter 9 introduction.

 Scrum (LO03; K1)

Scrum is a framework with which people address and solve complex problems in an adaptive manner,

while delivering the highest value products in a rewarding and creative way.

The candidate has basic knowledge of the Scrum framework including roles, events and artifacts.

Book: section 9.1.

 DevOps (LO04; K1)

DevOps is a cross-functional systems engineering culture that aims at unifying systems development

(Dev) and systems operations (Ops) with the ability to create and deliver fast, cheap, flexible and with

adequate quality, whereby the team as a whole is responsible for the quality.

The candidate has knowledge of DevOps, including the DevOps activities.

Book: sections 1.1, 9.2 introduction, 9.2.1.

 Quality measures (LO22; K2)

Quality was, is and remains a challenge within the IT industry. Quality engineering consists of a

great number of possible activities, the so-called quality measures.

The candidate understands that quality measures are integrated with all DevOps activities and why

the set of quality measures must be cohesive.

The candidate can explain the three groups of quality measures.

Book: chapter 28.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 14

 Quality Risk Analysis & Test Strategy (LO14; K3)

A test strategy is the allocation of quality measures to balance the investment in testing and to make

an optimal distribution of effort over test varieties and test approaches to give insight in test coverage

and test intensity. Often this is based on the quality risk levels and the pursued business value.

The candidate is able to determine where to focus the QA & testing activities by investigating the

quality risks involved with the IT system and identifying appropriate QA and testing measures, i.e. in

such a way that the aspects of the VOICE model are justified.

This learning objective has a strong relationship with learning objectives LO01 and LO15.

Book: section 5.2.1, 5.2.2; chapter 26, chapter 35 introduction.

 Specification and Example (LO23; K3)

In order to achieve a shared common understanding of what “it” is that should be built and try to

build “it” right the first time, you can use Specification and Example mapping approaches.

The candidate is able to conduct an example mapping session.

Book: section 35.2.

 Acceptance criteria (LO15; K3)

A cross-functional team, which is common in DevOps, will agree to deliver an IT product with a specific

quality level. This quality level is defined by the acceptance criteria for each user story. The team, the

product owner and other stakeholders discuss and collaborate closely so that the acceptance criteria

are supported by everyone involved.

The candidate can identify and/or enhance acceptance criteria to a situation and can apply the seven

tips [Ravlani 2017] for defining acceptance criteria.

The candidate can write and review a scenario in Gherkin syntax.

This learning objective has a strong relationship with learning objective LO23.

Book: section 5.6; chapter 27; section 35.2.2.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 15

2. Session 2

Learning objectives
LO06, LO07, LO09, LO10, LO11, LO43, LO44.

 Experience-based testing overview (LO43; K1)

Experience-based testing is a group of test approaches that are based on the skills, intuition and

experience of the tester. These approaches leave the tester free to design test cases in advance or

to create them on the spot during the test execution, mostly testers will do both.

The candidate recognizes approaches that belong to experience-based testing and knows that some

level of combination of experience-based and coverage-based testing should be in the test strategy.

Book: section 43.4, section 47.1.

 Checklist (LO44; K3)

Previous experience is an important source of information to prepare and guide quality engineering

activities such as reviewing and testing. This previous experience is often stored only in minds of

people. An easy way to capture this experience is by listing it in a checklist.

The candidate is able to create, adjust or complement a checklist regarding unit testing, functional

testing, non-functional testing and static testing.

Book: section 29.1.1.1; section 46.7, section 47.2.

 CI/CD pipeline (LO06; K2)

In DevOps, a CI/CD pipeline needs to be implemented. Continuous Integration & Continuous

Deployment (CI/CD) is seen as the backbone to enable DevOps. It bridges, maybe even closes, the

gap between development and operations by automating the building, packaging, testing, provisioning

of infrastructure and deployment of applications.

The candidate understands which quality engineering activities are linked to which stages in a CI/CD

pipeline.

Book: section 6.1; section 6.2; section 6.3 introduction; section 9.2.4.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 16

 Capabilities (LO07; K2)

With a CI/CD pipeline, steps in the software delivery process are automated. When creating such a –

fully – automated CI/CD pipeline, tools with specific capabilities are needed. Tools can frequently

change. Therefore, the capabilities need to be well defined to ensure a stable pipeline, and tools need

to be selected, based on these capabilities.

The candidate understands that the capabilities are used to define the pipeline and to select suitable

tools.

Book: section 6.3; section 6.4.

 Infrastructure (LO11; K3)

In DevOps the responsibility for the infrastructure has shifted from a separate department to the

DevOps team itself. As a result of this shift, some important parts of the infrastructure's quality

become a team responsibility.

The candidate can perform an infrastructure verification.

Book: chapter 22.

Syllabus: section 7.1.

 Monitoring & control (LO09; K3)

Monitoring and control are intended to promptly identify, report and forecast (gaps in) expected and

actual quality, related to the pursued business value.

The candidate can select the right area of monitoring in a given context.

The candidate is able to apply monitoring to check progress and to check to which level indicators

are met.

The candidate can create a simple dashboard based on measuring indicators.

This learning objective has a strong relationship with learning objective LO10.

Book: section 4.1, chapter 17, section 35.9.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 17

 Reporting & alerting (LO10; K3)

Testing is about providing different levels of information. Usually there are multiple audiences for

the information that the team generates based on their quality engineering activities.

DevOps teams and their stakeholders want to, and need to, have constant and direct insight into the

status of the IT system. And if something (either in product or process) deviates from the

expectations, they must be alerted as soon as possible. Therefore, DevOps teams will use state-of-

the-art tools for reporting and alerting, where on-line real-time dashboards are today perceived as

need-to-haves.

The candidate can select relevant information for dashboards & reports.

The candidate is able to analyze and draw conclusions from overview reports.

The candidate can select a proper way of alerting stakeholders.

This learning objective has a strong relationship with learning objective LO09.

Book: section 5.4; section 17.1.5, chapter 19.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 18

3. Session 3

Learning objectives
LO19, LO24, LO29, LO31, LO32, LO33, LO47, LO48, LO49.

 Clean architecture (quality aspects) (LO48; K2)

Clean architecture is about organizing your code in such a way so that it's easy to understand and

easy to change as the development grows. By applying universal rules of software architecture, you

can dramatically improve developer productivity throughout the life of any software system.

The candidate understands that loosely coupled code with high cohesion is the goal of clean

architecture.

Syllabus: section 7.2.

 Test-driven development & Specification and Example (LO24; K2)

Test-driven development (TDD) is a development method for software in which unit tests are written

first and then the code. This cycle can be repeated as many times as needed to make the code fully

functional according to the requirements.

The candidate comprehends the steps within Test-driven development.

The candidate is able to recall the Three laws of TDD and the principles behind them.

The candidate understands that TDD may be combined with one of the Specification and Example

approaches.

Book: section 35.3.

Syllabus: section 7.3.

 Unit testing principles (LO49; K2)

Writing unit tests basically is just like writing production code. However, the rules that apply for

writing good production code do not always apply to creating a good unit test. Well written tests are

assets while badly written tests are a burden to your application. Following unit testing principles

helps in creating good unit tests that pay off more than they cost.

The candidate understands the practices and importance of unit testing.

The candidate can compare the four groups of costs and benefits of unit testing.

Syllabus: section 7.5.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 19

 Static Code Analysis with tooling (LO47; K2)

Static code analysis of source code identifies (potential) faults, vulnerabilities and poor coding

practices automatically using tools. A commonly used tool is SonarQube.

The candidate understands the benefits of static code analysis and how a tool like SonarQube

contributes to code quality.

Book: section 6.1.

Syllabus: section 7.4.

 Automation (LO19; K2)

The demand for continuous testing has created a renewed focus on test automation. Test automation

is one of the main opportunities to meet the need for quality at speed, but also requires a structured

approach in order to effectively realize such a vision.

The candidate understands that automating everything that is repeated is contributing to efficient

software development. (note: automate only when it is useful, automation is not a goal in itself)

The candidate can describe items that could be automated as part of “everything as code” automation.

The candidate understands continuous testing and the different test automation solutions.

Book: chapter 32 introduction, sections 32.2, 32.3 and 32.6.

 Code coverage (LO33; K2)

Code coverage can be measured by specific tools during the execution of tests. We distinguish

various code coverage types.

The candidate can explain why some code coverage types are preferred over others and which code

coverage type to select given a certain context.

Book: section 46.8.

 Mutation testing tests the tests (LO29; K3)

Can the products of testing also be tested? Certainly! And they should be tested! How can you see if

the tests are complete? To some extent, this can be done by mutation testing.

The candidate can apply mutation testing to verify the quality of a test set.

Book: chapter 42.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 20

 Process-oriented test design overview (LO31; K2)

The process-oriented coverage group contains test design techniques that are based on processes,

for example a business process or a program algorithm structure.

The candidate is able to select test design techniques that belong to process-oriented test design.

Book: section 45.2.

 State transition testing (LO32; K3)

State Transition testing is a test design technique that focuses on states, events that initiate a

transition to another state and actions resulting from such event. Tests are designed to execute

valid and invalid state transitions. Multiple coverage levels can be achieved, indicated as n-switch

coverage.

The candidate can apply the test design technique “State transition testing” to a given test basis

with 0-switch coverage and 1-switch coverage.

Book: section 45.2.

Syllabus: section 7.6.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 21

4. Session 4

Learning objectives
LO28, LO34, LO35, LO36, LO37, LO38, LO45.

 Condition-oriented test design overview (LO34; K2)

The condition-oriented coverage group contains test design techniques that are based on the

behavior of decision points and the conditions that determine the result of a decision.

The candidate is able to select test design techniques and coverage types that belong to condition-

oriented test design.

Book: section 45.3, section 46.4 introduction.

 Condition -, Decision - & Condition Decision - & Multiple Condition
Coverage (LO35; K1)

CDC is a coverage type, from the coverage group Condition-oriented, that ensures the possible

outcomes of each condition and of the decision are tested at least once. This implies both "condition

coverage" and "decision coverage". MCC is a coverage type that covers all combinations of all

condition values.

The candidate knows about the coverage types Condition Coverage (CC), Decision Coverage (DC),

Condition Decision Coverage (CDC) and Multiple Condition Coverage (MCC).

Book: sections 46.4.2, 46.4.3 and 46.4.5.

 Modified Condition Decision Coverage (LO36; K3)

MCDC is a coverage type, from the coverage group Condition, that ensures that every possible

outcome of a condition is the determinant of the outcome of the decision, at least once. MCDC

implies also "condition/decision coverage".

The candidate can apply the coverage type Modified Condition Decision Coverage (MCDC) to a given

test basis.

This learning objective has a strong relationship with learning objectives LO37 and LO38.

Book: sections 46.4.2 and 46.4.4.

Syllabus: section 7.7 intro and section 7.7.1.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 22

 Semantic Test (LO37; K3)

A semantic test is a test with which for example the validity of data input is tested using the

semantic rules for the relationships of the data on the input device and other data, for example in

the database, in the system or on the input device. The semantic test is often executed in

combination with the syntactic test.

The test basis consists of the semantic rules, being single decision points, that specify what a data

item should comply with in order to be accepted by the system as valid input. Semantic rules are

connected with the relationships between data. These relationships may be between the data within

a screen, between data on various screens and between input data and existing data in the

database.

The candidate can apply the Semantic test design technique to a given test basis in combination

with Modified Condition Decision Coverage (MCDC).

This learning objective has a strong relationship with learning objective LO 36.

Book: section 46.4.1 and 46.4.4

Syllabus: section 7.7.2

 Elementary Comparison Test (LO38; K3)

The elementary comparison test (ECT) is a thorough technique for the detailed testing of

functionality. The necessary test basis is pseudo-code or a comparable specification in which

multiple decision points and functional paths are worked out in detail.

The ECT aims at thorough coverage of the decision points and not specifically at combining

functional paths. The basic coverage type used is Modified Condition Decision Coverage (MCDC). But

different coverage types can be applied to the ECT.

The candidate can apply the Elementary Comparison test design technique to a given test basis in

combination with Modified Condition Decision Coverage (MCDC).

This learning objective has a strong relationship with learning objective LO36.

Book: section 46.4.1 and 46.4.4

Syllabus: section 7.7.3

 Quality characteristics and non-functional testing (LO45; K2)

When deciding on their test varieties many testers start with distinguishing between functional testing

and non-functional testing. This refers to the quality characteristics. These are a very useful tool to

identify various characteristics of quality that are important for the stakeholders of an IT-system.

The candidate can interpret the eight main quality characteristics for product quality and the five main

quality characteristics for quality in use.

Book: Appendix.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 23

 Quality characteristic Maintainability (LO28; K2)

Teams are often focused on the cost-effective development of IT systems. In high-performance IT

delivery the team should find a proper balance between development and maintenance costs.

Maintainability is the degree of effectiveness and efficiency with which a product or system can be

modified by the intended maintainers. Maintainability can be tested both statically and dynamically.

The candidate understands the ideas behind maintainability testing and can give examples of ways to

perform these tests.

The candidate understands the ideas behind testability.

Book: chapter 41.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 24

5. Session 5

Learning objectives
LO05, LO16, LO17, LO27, LO39, LO40, LO41, LO42.

 Test varieties (LO27; K2)

IT products are different. People are different. Projects are different. Environments are different. So,

it would be an illusion to think that one-size-fits-all exists for testing. You need variety in your testing.

The candidate understands that determining the varieties in testing is based on the relevant quality

characteristics and other relevant perspectives, such as the spheres of testing, the testing pyramid

and the testing quadrants.

The candidate can explain that test varieties may include static testing among which testability

reviews. The candidate also understands the importance of agreeing on a test strategy.

This learning objective has a strong relationship with learning objectives LO14 and LO15.

Book: chapter 37.

 Reviewing (LO16; K3)

Static testing consists of informal reviewing, formal reviewing and static analysis.

The candidate can use the n-amigos session approach to perform an informal review of a given test

basis and provide feedback about the quality and/or identify anomalies.

Book: chapter 29, section 35.2.1, section 35.6.

 Pull requests (LO17; K3)

When using a check-out/check-in mechanism for code, as is common in continuous integration

pipelines, a pull request is part of the check-in process.

The candidate can review the changed code and can verify if the change was OK, using a checklist.

This learning objective has a strong relationship with learning objectives LO16 and LO44.

Book: section 29.1.1.1.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 25

 Cross-functional teams (LO05; K2)

Working in a cross-functional team means that the team as a whole is responsible for delivering value.

The team has all competencies and skills to perform the necessary tasks and no team member has

the monopoly on performing any task. This way the team can always go forward, even when a team

member is temporarily not available. And of course, a team can work together with specialists from

other teams or support groups for specific tasks. A person can have multiple roles sequentially or even

in parallel. It is not common for people to have a specific function, since that would easily lead to

monopolies on certain tasks.

The candidate demonstrates an understanding of how a cross-functional team operates and can state

in which way a cross-functional team operates more effectively than a multi-disciplinary team or when

working in silos.

Book: chapter 2 introduction; section 2.2 introduction, section 2.4, section 16.1.

 Data-oriented test design overview (LO39; K2)

The data-oriented coverage group contains test design techniques that use the structure or behavior

of the data that is used in the IT system.

The candidate is able to select test design techniques that belong to data-oriented test design.

Book: section 45.4.

 Equivalence partitioning (LO40; K1)

In the application of equivalence classes, the entire value range of a parameter is partitioned into

classes. In a specific class the system behavior is similar (equivalent) for every value of the

parameter.

The candidate knows the basic concepts of Equivalence Partitioning (EP).

Book: section 46.5.

 Boundary Value Analysis (LO41; K1)

Boundary Value Analysis is a test design technique based on the fact that around a boundary in the

value range of a variable there's a higher risk of faults in a system.

The candidate knows the difference between two-value -, three-value – and four-value Boundary

Value Analysis.

Book: section 46.5.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 26

 Data Combination Test (LO42; K3)

The Data Combination Test tests combinations of values of data items. Coverage can be determined

in various ways. A classification tree visualizes the relations between data items.

The candidate can apply the Data Combination Test (DCoT) test design technique to a given test

basis and can use a classification tree to visualize the relations between data items.

The candidate understands the different coverage levels for the DCoT.

Book: section 46.6.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 27

6. Session 6

Learning objectives
LO12, LO13, LO18, LO20, LO21, LO25, LO30.

 Selecting and combining approaches and techniques (LO30; K2)

There are a great number of approaches and techniques, which one(s) should you use? You can

choose static testing or dynamic testing or (often) both. But what should you do in your specific

situation?

The candidate understands how the factors test basis, quality risks, quality characteristics and skills

play a role in selecting relevant approaches and techniques.

Book: section 45.6.

 Test execution (LO20; K3)

Test execution is the execution of tests by running the system under test and this way obtain the

actual results that can be compared with the expected results to determine whether the tests have

passed or failed.

The candidate can perform a pre-test and can execute explicit and implicit testing and register the

results such that these can be investigated and assessed.

This learning objective has a strong relationship with learning objective LO21.

Book: chapter 33.

 Investigate & assess outcome (LO21; K3)

When the team members execute the test scenarios and test scripts, they compare the actual

outcomes with the expected outcomes and assess the results.

The candidate can identify whether the executed test has passed or failed or was not run. The

candidate can also perform the steps for creating an anomaly, in the case of a failed test.

This learning objective has a strong relationship with learning objective LO20.

Book: chapter 34.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 28

 Feature toggles (LO25; K2)

A feature toggle (also called feature flag) is a powerful technique, allowing teams to modify system

behavior without changing code. A mechanism that enables deployment of features that are not

finished yet, or of which the quality is uncertain. Code can be deployed to the production

environment without being available to the users by turning off the feature toggle. At a later stage it

can be made available by just turning the feature toggle on. And if a problem occurs it can be turned

off again.

The candidate can compare the four categories of feature toggles and understands when which

category can be applied.

Book: section 35.8.

 Metrics (LO12; K3)

A DevOps team wants to be in control. Therefore, the team needs to measure relevant parameters.

The resulting metrics give useful information about the status and are a starting point for

improvement measures.

Everyone is involved in choosing “good” metrics and setting business goals; organization, team and

individuals. But what are “good” metrics?

The candidate can apply the three fundamentals to determine “good” metrics.

The candidate can select efficiency and effectiveness metrics to a given situation.

Book: chapter 24 up to and including section 24.4.

 Continuous improvement (LO13; K3)

DevOps teams work in an everchanging world where the common expectation is that quality and speed

improve. They constantly need to improve their way of working and adapt to changed circumstances.

The candidate is able to apply the Deming cycle to a given situation.

Book: chapter 25 introduction, section 25.2.4.

 Test data management (LO18; K3)

Some test varieties need a high volume of test data but the exact data doesn’t matter that much.

Other test varieties require a relatively limited set of test data but the values of the data must be

carefully aligned across various systems, possibly even across multiple organizations. The

implementation of the right test data management practices is a key consideration for the realization

of significant time and efficiency gains in quality assurance and testing.

The candidate can apply data scrambling and rule-based masking based on a list of general personal

data.

Book: chapter 31.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 29

7. Description of additional subjects

This chapter contains the in-depth descriptions to support learning objectives that are not based on

contents of the book “Quality for DevOps teams”. These additional subjects are based on information

that is available on the TMAP body of knowledge website (www.tmap.net).

Note: for the exam, the descriptions in this chapter supersede any texts on the website, even in case

the website would contain other (more up-to-date) descriptions. This syllabus is regularly updated to

include the latest insights.

 Infrastructure-as-code and infrastructure verification

 Infrastructure-as-code

Definition: Infrastructure-as-code (IaC) is the process of managing and provisioning computer

environments through machine-readable definition files, rather than physical hardware configuration

or interactive configuration tools.

Infrastructure-as-code (IaC) is an approach whereby an infrastructure configuration is scripted or

described by files that are stored in version control, and changes are pushed out to the datacenter in

a controlled manner. This parallels the discipline of source control and build promotion used in software

development, hence ‘as code’.

Definition: A test environment is a composition of parts, such as hardware and software, connections,

environment data, tools and operational processes in which a test is carried out.

A popular open source tool for infrastructure automation is HashiCorp - Terraform. It uses a DSL

(Domain Specific Language) to script the desired infrastructure. Using this approach provides

consistent and repeatable environment changes, reducing the manual effort involved, especially in

troubleshooting environmental differences.

Applying IaC will eliminate several problems. E.g.:

- Labor intensive; building and configuring a complete infrastructure for an IT-system

traditionally is a time-consuming activity

- Error prone; manual building the infrastructure for an IT-system, following a checklist or not,

is an error prone process

- Hard to exactly rebuild infrastructure for other environments, like another test or acceptance

environment

- Difference between design and reality; all above mentioned possible problems result in a

difference between designed and approved infrastructure architecture and the implemented

infrastructure.

Using IaC, a lot of problems can be converted in advantages:

- Modularization; the DRY principle (Don’t Repeat Yourself) applies also for IaC similar as

applications code. Split the complete infrastructure into small reusable pieces of code.

- Maintainability and versioning

- Testability; See infrastructure verification

- Automation

http://www.tmap.net/

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 30

- Repeatability; Similar infrastructures can be deployed over and over again

- Security, compliance and policies

- Collaboration and code review

The extra advantage of tools like Terraform is that it is agnostic for the target cloud platform. A single

tool and domain specific language can be used for a variety of cloud providers.

Example of a Hashicorp - Terraform code snippet: Creation of AWS server instance and AWS database

instance.

// Creation of an Amazon Web Services (AWS) server instance and an AWS database instance.

// This example doesn’t use variables.

// Declare AWS instance

resource "aws_instance" "web" {

 ami = "${data.aws_ami.ubuntu.id}"

 instance_type = "t2.micro"

 tags = {

 Name = "testland-webserver"

 }

}

// Declare data block which is used during creation of AWS instance

data "aws_ami" "ubuntu" {

 most_recent = true

 filter {

 name = "name"

 values = ["ubuntu/images/ubuntu-trusty-14.04-amd64-server-*"]

 }

 owners = ["0123456789"]

}

// Declare AWS database

resource "aws_db_instance" "default" {

 allocated_storage = "20"

 storage_type = "gp2"

 engine = "postgres"

 engine_version = "12.3"

 instance_class = "t2.micro"

 name = "postgres"

 username = "postgres"

 password = "postgres"

 final_snapshot_identifier = "postgres"

}

 Infrastructure verification

In DevOps the implementation of the complete IT-system is a responsibility of the team, this includes

the implementation and configuration of the infrastructure. To make use of all benefits described in

the previous section, it is recommended to define the infrastructure as code and apply the same quality

engineering principles as done on application code.

Infrastructure verification is key when you make use of IaC, without automated tests IaC must be

considered broken. The purpose of verifying the infrastructure is similar as it is for application source

code.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 31

Verification (and also validation) of the Infrastructure takes place regarding all fundamental DevOps

activities. The following sections briefly describe this per fundamental DevOps activity.

Plan

Does the infrastructure architecture adhere to key quality characteristics? For example: security and

maintainability, but also characteristics like fault-tolerance, fail-over, scalability and resilience should

meet the desired requirements. The planning phase is the phase were the architectural design should

be verified against policies and industry regulations. During the planning phase preventive quality

measures are used to prevent insufficient quality.

Code

Transforming the architectural design into code is an agile process. The architecture is divided into

small, reusable, flexible, easy codable and testable modules. The modules and also IaC should be

verified on different aspects.

o Syntactical correctness

o Code formatting (linting)

o Code testing (deep linting)

o Accordance with company or team policies and industry regulations

With linting you make sure that all code uses the same formatting and styling regardless which team

member writes the code. On top of that, deep linting can be applied which is called ‘code testing’.

Code testing is a technique to verify the IaC on the correctness of the types that are used. E.g. AWS

uses instance-type for their computing machine. The IaC should not use unavailable, incorrect,

incomplete or outdated types.

In accordance with the stages in the build pipeline dynamic testing is also part of testing the IaC,

State testing is the test variety which is performed on the IaC. The purpose of state testing is verifying

the IaC in a runtime environment, so the infrastructure is actually deployed on the target platform.

State testing the IaC is not related to the state transition testing technique.

State testing the infrastructure is done in 3 steps

1. Deploy real infrastructure which needs to be tested

2. Verify basic attributes of the infrastructure:

a. Assigned compute power (CPU’s/cores)

b. Assigned internal memory (RAM)

c. Assigned diskspace

d. Version of OS (Eg.: RHEL8, MS Window Server 2019)

e. Patch level of OS

f. Type of database (Postgres, MySQL)

3. Undeploy the infrastructure under test

a. Verify that deployed IaC is completely removed

By state testing IaC the code is verified (and validated) in a real environment which eliminates the

need for mocks, stubs or other artificial components. This testing type can be slow for large

infrastructures and potentially also be very costly.

It’s advised to perform the state test in an isolated ‘sandbox’ environment to prevent interference with

existing infrastructure.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 32

Detective quality measures are predominantly used during the coding activity to detect a possible

insufficient level of quality.

Integrate

The most extended test for IaC is the integration test. During this test the IaC is tested including the

deployment and configuration middleware components. Middleware components in the infrastructure

can occur in many forms, for example: application servers, web application, firewall, database engines

and web servers.

Attributes which should be assessed during this test are (non-exhaustive):

- Is server listening on correct port?

- Are security certificates correctly installed?

- Are the firewall rules implemented? (Thus, can server A connect to server B, or the opposite,

is the connection from server A to server B denied.)

- Are databases correctly configured? Listening to correct port? Is naming of schema correct?

- Are proxy rules configured?

Deploy

Deployment of the IaC takes place at several stages. During the team test stage and the business test

stage the IaC is verified in combination with the application under test.

Verification during the deploy activity has a focus on stability, security, performance, resource

consumption. Relevant test varieties are smoke testing, performance testing and security testing. All

tests are performed under close watch of monitoring-tooling to detect resource consumption.

The last deployment in the iteration is to the production environment. During the deployment activity

detective quality measures are used.

Operate and Monitor

During the last activities of the DevOps cycle the complete IT-system including the IaC is live and

used by the customer. The IT-system is monitored on several aspects and feedback is collected from

the IT-system. This feedback is used to continuously improve the IT-system. Corrective and detective

quality measures are used to detect and improve lack in quality.

Sources

https://itnext.io/principles-patterns-and-practices-for-effective-infrastructure-as-code-e5f7bbe13df1

https://blog.gruntwork.io/5-lessons-learned-from-writing-over-300-000-lines-of-infrastructure-

code-36ba7fadeac1

https://medium.com/faun/terraform-acceptance-testing-the-basics-5450d35a4421

https://www.infoq.com/presentations/iac-terraform-testing/

https://www.thoughtworks.com/radar/techniques/infrastructure-as-code

https://www.terraform.io/

https://itnext.io/principles-patterns-and-practices-for-effective-infrastructure-as-code-e5f7bbe13df1
https://blog.gruntwork.io/5-lessons-learned-from-writing-over-300-000-lines-of-infrastructure-code-36ba7fadeac1
https://blog.gruntwork.io/5-lessons-learned-from-writing-over-300-000-lines-of-infrastructure-code-36ba7fadeac1
https://medium.com/faun/terraform-acceptance-testing-the-basics-5450d35a4421
https://www.infoq.com/presentations/iac-terraform-testing/
https://www.thoughtworks.com/radar/techniques/infrastructure-as-code
https://www.terraform.io/

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 33

 Clean Architecture

Any software project should not only consist of so-called ‘clean code’ but should also have a clean

architecture. What does it mean to have a clean architecture? Over the years there have been many

ideas about this, which may differ in their details, but are all based on the same principles. The most

important objective is the separation of concerns. This is achieved by dividing software into layers to

achieve loose coupling and high cohesion.

Coupling

Most software evolves over time. If we want to upgrade our software with a snazzy new front-end, a

faster database or an easy-to-use framework, parts of the software will have to be replaced. To enable

this, software should be designed in such a way that it supports such replacements by requiring

minimal changes, by making sure that each of the components has (or makes use of) little or no

knowledge of the definitions of other separate components. This is called loose coupling.

Many integrated products, such as laptops or tablets, are good examples of tight coupling: if your

laptop screen breaks, you’re probably better off buying a new laptop. Because the screen is fixed to

the laptop and won't come loose, it makes replacing the screen very expensive. A loosely coupled

computer would allow effortlessly changing the screen, which is the case for a desktop.

So, if we want to achieve loose coupling, the code should be written as generic as possible and only

go into specifics whenever unavoidable. For instance, if we want to swap out a database for a new

one, this should not affect the functionality of the code, but should only affect the class that is

dedicated to connecting to the database.

Cohesion

Cohesion in software engineering is the degree to which the elements of a certain module (or class)

belong together. Low cohesion (or coincidental cohesion) is when parts of a module are grouped

arbitrarily, whereas high cohesion (or functional cohesion) is when parts of a module all contribute to

a single well-defined task of the module.

The Model-View-Controller design pattern is a good example of high cohesion: all methods related to

the model are grouped in a model class, all methods relating to displaying the information are grouped

in the view class and all methods that are related to processing events are written in the controller

class.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 34

The picture on the previous page shows four quadrants:

1) Loose coupling and low cohesion results in a complex system with modules that don’t have a

clear task and have poor maintainability.

2) Tight coupling and low cohesion results in a monolithic system where modules don’t have one

clear purpose but serve various goals.

3) Tight coupling and high cohesion results in a dependent system where modules depend on

each other and can’t function without each other.

4) Goal: Loose coupling & High cohesion

In software development we strive for loose coupling and high cohesion, because it leads to

increased module reusability, better system maintainability and reduced module complexity,

making the code easier to understand and debug. From a quality engineering perspective this

is the best way to achieve quality at speed (both in development and in operations).

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 35

 Test-Driven Development & Specification and Example approach

TDD is a design method

Design is superadditive (the whole is greater than the sum of its parts) and TDD is about designing a

solution to a problem.

One of the biggest problems with software development, is not knowing what will happen, when things

interact. Our code might be used in scenarios we didn’t expect, and therefore our code might not be

able to handle it. Applying TDD helps in identifying these unsuspected interactions.

The TDD process is described in chapter 35.3 of the book.

 TDD Process: The three laws of TDD

1. You are not allowed to write any production code unless it is to make a failing unit-test

pass.

2. You are not allowed to write any more of a unit-test than is sufficient to fail; and

compilation failures are failures.

3. You are not allowed to write any more production code than is sufficient to pass the

one failing unit-test.

Reference: Uncle Bob1

These laws can be translated into:

1. Write a unit test.

2. You should only write this single unit test.

3. Write the code for the unit test to pass, but no more code than that.

At first glance these 3 laws might seem very unproductive, since it will require the developer to

switch between writing unit-tests and code. But there are many benefits of doing that, which we will

make clear in the following section.

1 http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 36

Design

TDD will make the design testable. Any piece of code can be written so

complicated, that it will be impossible to test. But if a test is written first,

then the code to make the test pass, is automatically testable.

Also, TDD will make you avoid too complex thinking. You might get a

great idea, then expanding it, then expanding it even more, only to get

disturbed and forgetting most of it. Complex thinking is very demanding

on the brain, which might make you overlook critical situations. TDD will

make you take one unit-step at a time, for you to be able to foresee

possible consequences for each unit, instead of dealing with the whole

complexity at once.

Improving code

It will give other developers the option to improve, optimize or clean the

existing code. Anyone with a bright idea, can try to improve the code,

with less fear of breaking existing known functionality.

Debugging

Unit-testing will not only avoid a lot of debugging but will also make it

easier to debug correctly. Why use time on figuring out something you

already have figured out once? A unit-test is a way to document, how

something was debugged. Not only will a unit-test remember it better

than you, but another developer can simply use the unit-test, without

asking you for help.

(the picture on the right of this page is figure 35.5 of the book)

 TDD Principles

We distinguish several TDD principles:

Red, Green Refactor

As described in the book:

Writing a unit-test without writing any code, will make the unit-

test fail (RED)

Writing the code to make the unit-test pass, will make the unit-

test pass (GREEN)

Updating the code, while the unit-tests still passes, will not

break the code. (REFACTOR)

Keep It Simple Stupid (KISS)

Writing a unit-test before any code, will minimize the amount of test cases, because you will only test

the code for what is needed.

Writing a unit-test after code, will make either:

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 37

▪ The number of test cases explode (to cover all the possible scenarios (both needed and unneeded

for the product).

▪ The test cases irrelevant, because they test some parts of code, which we don’t know if they are

needed for the product or not.

▪ The test cases to never be coded, because of bad experience with the 2 previous points

(explosion or irrelevance).

(note: KISS is also known as Keep it Simple & Short)

It’s All About Collaboration

TDD is about guiding the team to design and build the right software. The unit-test (which may also

be called component test) is designed to test if the solution will meet the goal. Writing code that

passes the unit test, is your proof that the code meets the goal.

After a unit-test is deployed, the ownership is transferred from the developer to the team.

What a developer can do by him/herself:

▪ Add any unit-test and make it pass,

▪ Change any piece of code, as long as all existing unit-tests still pass.

▪ Ask the product owner, architect, etc., when there is no answer to a problem.

What a developer can’t do by him/herself (but should do together with (a) team member(s)):

▪ Changing or removing any unit-test, because it will influence the design and break the

product. Use your team to minimize the problems.

▪ Insource risk from the product owner, architect, etc.

 TDD and Specification and Example (SaE)

TDD can be amplified by Specification and Example (SaE) approaches, for example Acceptance Test

Driven Development (ATDD) and Behavior Driven Development (BDD). The difference between ATDD

and BDD is in the area that ATDD scenarios

focus on the “what” question and BDD

gives substance to the “how” question.

These two also complement each other.

The figure on this page shows how SaE

approaches interact with TDD. SaE is

shown on the left and TDD on the right.

(this is figure 35.6 from the book)

Looking at the Agile testing quadrants as

described in §37.3 of the book, one sees

that SaE and TDD apply to the left side of

the quadrants. SaE is Business facing and

involves the business analyst (BA) and

testing roles. TDD is Technology focusing

and fits within a Developer role, i.e. part of

creating code. However, both have the

goal of “Guiding the team”, in other words

to help the team building the right system.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 38

From a BA perspective, ATDD and BDD scenarios can be created which serve as input for performing

Development tasks. The value of SaE scenarios in combination with TDD (and unit tests/component

tests) is that they cover scenarios that comprise two or more units. A higher coverage at unit level

can be pursued combined with a limited number of SaE scenarios. Consider, for example, a business

process in which two sub-processes run parallel to each other. The separate sub-processes can be

tested at unit level, but the interaction between the two can be covered at BDD and ATDD level.

By combining the different approaches, we can generate an effective and balanced set of scenarios.

These scenarios can additionally be identified using test design techniques. Consider, for example,

performing a boundary value analysis.

 Static code analysis with SonarQube

Static code analysis is the analysis of software that is performed without actually executing

programs, in contrast with dynamic analysis, which is analysis performed on programs while they

are executing. Static code analysis is performed on some version of the code.

Static code analysis is part of static analysis which is one of the three groups of static testing as

shown in this picture:

Static code analysis is a collection of algorithms and techniques used to analyze source code in order

to automatically find (potential) faults, vulnerabilities or poor coding practices. An example of a

result of static testing are compiler warnings (which can be useful for finding coding errors), but

static code analysis with more sophisticated tools takes that idea a step further to find faults that

are traditionally found by dynamic testing.

The tasks solved by static code analysis can be divided into 3 categories:

▪ Detecting faults or vulnerabilities in programs. These can for example be logic faults (such as

unreachable code) and writing on a read only variable.

▪ Recommendations on code formatting. Some static analyzers allow you to check if the source

code corresponds to the code formatting standard used in your company.

▪ Metrics computation. Software metrics are a measure that lets you get a numerical value of

some property of software or its specifications. An example is cyclomatic complexity that can be

used to indicate the maintainability of the code.

There are multiple tools that cover one or more aspects of static code analysis. A well-known tool is

SonarQube.

SonarQube is an open-source platform for continuous inspection of code quality to perform

automatic reviews with static analysis of code to detect faults, code smells, and security

vulnerabilities on 20+ programming languages.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 39

SonarQube analyzes source code, measuring the quality level and providing reports for your

projects. It combines static and dynamic analysis tools and enables quality to be monitored

continuously over time. Everything that affects a code base, from minor styling details to critical

design errors, is inspected and evaluated by SonarQube. This way SonarQube enables developers to

access and track code analysis data. This data ranges from styling errors, potential faults, and code

problems to design inefficiencies, code duplication, lack of test coverage, and excess complexity.

The SonarQube platform analyzes source code from different aspects and hence it drills down to

your code layer by layer, moving from the module level down to the class level. At each level,

SonarQube produces metric values and statistics, revealing problematic areas in the source that

require inspection or improvement. This is very effective in large teams managing a big codebase.

Whenever the code is built by a developer it is immediately analyzed, so they will notice any fault or

vulnerability themselves as they were inserting them, rather than having to fix them at a later time.

SonarQube can be implemented in your CI/CD pipeline and issues will be only detected when your

code is pushed to the repository. For specific aspects of static code analysis, tools can be embedded

in the IDE to perform the check real-time.

Sources:

https://dzone.com/articles/why-sonarqube-1

https://en.wikipedia.org/wiki/Static_program_analysis.

https://dzone.com/articles/why-sonarqube-1
https://en.wikipedia.org/wiki/Static_program_analysis

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 40

 Unit testing principles

 Unit testing

Unit testing is a very important quality measure that supports the IT delivery objective to deliver

quality at speed. (note: unit testing is also called component testing)

The main goal of unit testing is to verify that the implementation does what it intends to do. It is

about individually testing the smallest units of code, referred to as modules or components. This

allows developers to isolate each component, and whenever they are not according to expectation,

fix problems at an early stage of the development lifecycle. Developers aim to test each part of the

software in individual components as early as possible in the development process. For example,

you have a password field and the requirements are that it needs to be at least 8 characters long,

must contain alphanumerical characters and at least one symbol. Good practice is to create test

cases that meet these criteria and, more important, also test cases that do not meet these criteria.

So, a password like “secret01” should fail and “Secret123!” should pass the test.

Writing unit tests basically is just like writing production code. Well-written tests are assets while

badly written tests are a burden. Following unit testing principles helps in creating good unit tests

that pay off more than they cost.

 Principles

The aim of DevOps teams is to build quality in. Testing the code on desired functionality and quality

while writing the code is therefore an effective and efficient way to verify that the implementation

actually does what it is intended to do. Some benefits of unit testing are:

▪ It provides a fast feedback-loop for verifying code changes.

▪ It provides a safety net – we know that the code works.

▪ It reduces costs and technical debt (e.g. because it reduces rework).

▪ It can be applied as regression test.

▪ It forms the basis for test automation.

▪ It facilitates easy verification of changes during maintenance.

Unit tests are an effective way to find faults or detect regressions, but unit tests should not be the

only testing that is done. Unit tests, by definition, examine each unit of code separately. Unit testing

(as part of Test Driven Development) supports designing software components robustly. But when

an application is run for real, all those units also have to work together, and the whole is more

complex and subtle than the sum of its independently tested parts. So other varieties of testing

must also be organized by the team. For example, refer to the testing pyramid for more information.

(chapter 37 of the book “Quality for DevOps teams”).

That sounds great, but still some people may wonder: Why do you actually want a secondary

system to help design or verify your code? Doesn’t your source code itself express the design and

behavior of your solution?

The benefit of unit testing is correlated with the non-obviousness of the code under test

If you have code of any normal length, already it is not obvious at a single glance – so working out

its exact behavior would take time and careful thought. Next additional design - and verification

assistance (e.g., through unit testing) is essential to be sure that all situations are handled correctly.

For example, if you’re coding a system of business rules or parsing a complex hierarchical string

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 41

format, there will be too many possible code paths to check at a glance. In scenarios like these, unit

tests are extremely helpful and valuable.

Unit testing takes time, apply good practices to be efficient

Designing and executing unit tests of course will require effort and time. On the other hand, it also

brings benefits which makes this investment worthwhile.

Here we give some examples of the efforts needed for designing and executing unit tests.

▪ The time needed for writing unit tests

▪ The time spent fixing and updating unit tests, either because you’ve deliberately refactored

interfaces between code units or the responsibilities distributed among them, or because tests

broke unexpectedly when you made other changes

Some people avoid improving and refactoring application code out of fear that it may break a lot of

unit tests and hence incur extra work. This of course is reversing the idea of quality engineering,

keeping unit tests in sync with the application code is part of the work and when applying test driven

development, creating and improving unit tests is just part of the development process.

FIRST-U rules

To write good unit tests apply the “FIRST-U” rules: Fast, Isolated/Independent, Repeatable, Self-

validating, Timely and Understandable.

These rules are described below:

▪ Fast

Unit tests should be fast otherwise they will slow down your development/deployment time and

will take longer time to pass or fail. E.g. in TDD short iterations of “change or add code” and

running unit tests are performed. If the tests aren’t fast enough, this methodology loses its

power. Typically, on a sufficiently large system, there will be a few thousand unit tests. If you

have 2000 unit tests and the average unit test takes 200 milliseconds to run (which is be

considered fast), then it will take 6.5 minutes to run the complete suite. 6.5 minutes may not

seem long but imagine you run them multiple times a day, it will use a significant amount of

your time. And imagine when the count of these tests increases because new functionalities are

added to the application, it will further increase the test execution time. Then the value of your

suite of unit tests diminishes as their ability to provide continual, comprehensive, and fast

feedback about the health of your system also diminishes.

▪ Isolated/Independent

Never ever write tests which depend on other test cases. No matter how carefully you design

them, there will always be possibilities of false alarms. To make the situation worse, you may

end up spending a lot of time figuring out which test in the chain has caused the failure.

You should be able to run any one test at any time, in any order.

By making independent tests, it’s easy to keep your tests focused only on a small part of

behavior. When this test fails, you know exactly what has gone wrong and where. No need to

debug the code itself.

The Single Responsibility Principle (SRP) of SOLID Class-Design Principles says that classes

should be small and single-purpose. This can (and should) be applied to your tests as well. If one

of your test cases can break for more than one reason, consider splitting it into separate test

cases.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 42

▪ Repeatable

A repeatable test is one that produces the same result each time you run it. To accomplish

repeatable tests, you must isolate them from anything in the external environment, not under

your direct control. In these cases use mock objects. They are intended for this very purpose.

On occasion, you’ll need to interact directly with an external environmental influence such as a

database. You’ll want to set up a private sandbox to avoid conflicts with other developers whose

tests concurrently alter the database. A good practice is to use in-memory databases.

▪ Self-validating

Tests must be self-validating. This means each test must be able to determine if the actual

output is according to the expected output. This determines if the test is passed or failed. There

must be no manual interpretation of results. (Manually verifying the results of tests is a time-

consuming process that can also introduce more risk)

Make sure you don’t do anything silly, such as designing a test to require manual arrange steps

before you can run it. You must automate any setup your test requires – even do not rely on the

existence of a database and pre-cooked data.

Create an in-memory database, create a schema and insert dummy data and then test the code.

This way, you can run this test many times without fearing any external factor which can affect

test execution and its result.

▪ Timely

Practically, you can write unit tests at any time. You can wait up to code is production-ready, but

you’re better off focusing on writing unit tests in a timely fashion. Using Test Driven

Development is a good practice to follow.

As a suggestion, you should have guidelines or strict rules around unit testing. You can use

review processes or even automated tools to reject code without sufficient tests.

The more you unit test, the more you’ll find that it pays off to write smaller chunks of code

before tackling a corresponding unit test. First, it’ll be easier to write the test, and second, the

test will pay off immediately as you flesh out the rest of the behavior in the surrounding code.

▪ Understandable

This is probably the most important practice, even though often missed.

A unit test should have a title in the form of a user story or a description of what it does and

what to expect. Don’t just give a unit test a simple number such as test1, test2, test3, etc... but

assign useful and meaningful names.

Anatomy of a unit test case

The typical anatomy of every unit test is arrange-act-assert or given-when-then. This pattern is a

standard across the industry.

In the arrange (given) section the unit which is tested is initialized in a specific state. Mocks are

created, and the expected result is set.

The act section is the actual execution of the unit test case.

The assert section compares the actual output of the act section with the expected output set in the

arrange section.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 43

Below is a snippet of Java unit test code which give an example of the anatomy of a unit test

The cost of unit testing a certain code unit is very closely correlated with its number of

dependencies on other code units.

Below the costs and benefits of unit testing are put in a simple diagram.

▪ Complex code with few dependencies (top left). Typically, this means self-contained algorithms

for business rules or for things like sorting or parsing data. This cost-benefit argument goes

strongly in favor of unit testing this code, because it’s cheap to do and highly beneficial.

▪ Trivial code with many dependencies (bottom right). This quadrant has been labelled

“coordinators”, because these code units tend to glue together and orchestrate interactions

between other code units. This cost-benefit argument is in favor of not unit testing this code: it’s

expensive to do and yields little practical benefit. Your time is finite; spend it more effectively

elsewhere.

▪ Complex code with many dependencies (top right). This code is very expensive to write with unit

tests, but too risky to write without. Usually you can sidestep this dilemma by decomposing the

code into two parts: the complex logic (algorithm) and the bit that interacts with many

dependencies (coordinator).

▪ Trival code with few dependencies (bottom left). We needn’t worry about this code. In cost-

benefit terms, creating unit tests is so easy that you should just do it.

@Test

@DisplayName("Test – Allow access boatride TestLand")

void testAllowAccessBoatride() {

 // Arrange the test into a specific state.

 // Arrange: Create an attraction

 final Attraction boatRide = new Boatride(new LengthValidator());

 // Arrange: Create a visitor, set length of visitor to 1.85 mtr

 Final Visitor adultVisitor = Visitor.builder()

 .length(185)

 .build();

 // Act: Actual invocation of LengthValidator, and testing the functionality

 Boolean isAllowed = boatride.checkLengthVisitor(adultVisitor);

 // Assert: Check output of Act stage with expected result

 assert(true, isAllowed);

}

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 44

Sources:

https://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises

https://howtodoinjava.com/best-practices/first-principles-for-good-tests

https://blog.stevensanderson.com/2009/11/04/selective-unit-testing-costs-and-benefits.

https://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises/
https://howtodoinjava.com/best-practices/first-principles-for-good-tests/
https://blog.stevensanderson.com/2009/11/04/selective-unit-testing-costs-and-benefits/

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 45

 State Transition Testing

Many systems show state-based behavior. State-based models are used to define this behavior. These

models can also be used to design tests. With state transition testing several distinct coverage levels

can be achieved.

Test approach: Coverage-based - process-oriented

Test variety: Functionality testing, process flow testing, menu-structure testing, and more

Test basis: State Transition diagram(s) and state table(s)

Coverage type: State transitions

Description

State Transition testing is a process-oriented test design technique that focuses on states, events that

initiate a transition to another state and actions resulting from such events. Tests are designed to

execute valid and invalid state transitions. State transition testing is used to test whether the system

correctly responds to events for example by transitioning from one state to another. Multiple coverage

levels can be achieved, indicated as n-switch coverage.

State transition testing is often used to test embedded software that controls machines, but also to

test menu-structures in GUI-based systems or other types of systems that have distinct states and a

process for getting from one state to another.

The correct behavior of the system is described in a state transition diagram that gives an overview

of all states, the transitions between these states, the events that trigger transitions and the actions

that result from events.

A state is a distinguishable situation of a system. A system can only be in one state

at any point in time. A system can transition from one state to another.

A transition is a change from one state to another. A transition may also be to the

same state (a “transition-to-self”).

An event is an occurrence inside or outside a system that can result in a transition.

An action is behavior executed at a particular point in the system. It can also be a

string of actions.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 46

Pictured above is an example of a simple state transition diagram. Our example system is a lamp. The

lamp can be off or on. If the on-button is pushed, the electric current is enabled and the lamp is turned

on. If the off-button is pushed, the electric current is cut and the lamp is turned off.

The transitions between states can also be shown in a state table as shown below.

Event

State
Push on-button Push off-button

Lamp off
Enable electric current

Lamp on
-

Lamp on -
Cut electric current

Lamp off

The left side of the table contains the states, and the top contains the events.

When a transition is valid the resulting state is shown in the corresponding cell of the table. Above the

resulting states, the actions may be added, this is optional.

When the transition is invalid, it is shown as a hyphen (‘-‘).

Within state transition testing you can choose to test individual transitions or combinations of

transitions.

Since a state transition diagram doesn’t show invalid transitions, only test cases with valid transitions

can be derived from a state transition diagram.

A state table indicates valid transitions and invalid transitions, so a state table can be used for testing

both.

The level of test coverage is related to the number of consecutive transitions that are covered. If every

single transition is tested, we achieve “0-switch coverage”. 0-switch coverage means that we do not

focus on testing consecutive transitions. If sequences of two transitions are tested, so all combinations

of two consecutive transitions are tested, we achieve “1-switch coverage”. If a higher number of

consecutive transitions are tested, we speak of “n-switch coverage” where ‘n’ is the number of

consecutive transitions minus 1. For example, “2-switch coverage” tests combinations of 3 consecutive

transitions.

Usually only 0-switch coverage and 1-switch coverage are applied, sometimes 2-switch.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 47

Identify test situations

Test situations for state transition testing can be:

▪ The individual states – this enables testing if all states can be reached

▪ The individual transitions – this can be used to ensure 0-switch coverage

▪ The combinations of “n” transitions – this can be used to ensure “n-1”-coverage

a) Coverage of all states
▪ lamp off

▪ lamp on

b) 0-switch coverage
▪ lamp off – push on-button – lamp on

▪ lamp on – push off-button – lamp off

c) 1-switch coverage
▪ lamp off – push on-button – lamp on – push off-button – lamp off

▪ lamp on – push off-button – lamp off – push on-button – lamp on

d) 2-switch coverage
▪ lamp off – push on-button – lamp on – push off-button – lamp off

– push on-button – lamp on

▪ lamp on – push off-button – lamp off – push on-button – lamp on

– push off-button – lamp off

etcetera for n-switch (higher coverage levels are usually only sensible with complex diagrams)

Create logical test cases

There are two possibilities for creating logical test cases:

1) Create a test case for every individual test situation

2) Combine multiple test situations in a test case.

Examples:

a) Coverage of

all states
1) ▪ TC1: lamp off

▪ TC2: lamp on

➔ this achieves coverage of all states with two test cases

 2) ▪ TC1: lamp off – push on-button – lamp on

➔ this achieves coverage of all states with just one test case

b) 0-switch

coverage
1) ▪ TC1: lamp off – push on-button – lamp on

▪ TC2: lamp on – push off-button – lamp off

➔ this achieves 0-switch coverage with two test cases

 2) ▪ TC1: lamp off – push on-button – lamp on – push off-button – lamp off

➔ this achieves 0- switch coverage with just one test case

c) 1-switch

coverage
1) ▪ TC1: lamp off – push on-button – lamp on – push off-button – lamp off

▪ TC2: lamp on – push off-button – lamp off - push on-button – lamp on

➔ this achieves 1- switch coverage with two test cases

 2) ▪ TC1: lamp off – push on-button – lamp on – push off-button – lamp off

– push on-button – lamp on

➔ this achieves 1- switch coverage with just one test case

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 48

When would you use one test case per test situation, and when would you combine multiple test

situations in a test case?

In general, for progression testing you would use many short test cases so that in case of a failure it

will be relatively easy to investigate the problem. Also, in unit testing you want to test small parts of

the code, so you would also use many short test cases.

For regression testing you would use a few long test cases since you mainly want to establish whether

the system that previously passed the test was not negatively impacted by a change. As an example,

in end-to-end testing you want to test an entire business process and don’t bother about all possible

exceptions, so you would also create few long test cases.

How to calculate the number of test situations

To calculate the number of test situations needed for 0-switch coverage, simply count the number of

transitions.

To achieve 0-switch coverage, every test situation must be part of at least one testcase.

The number of test situations for 1-switch testing is calculated as follows:

- For every state ➔ multiply the number of in-coming transitions by the number of out-going

transitions

- Add the results for all states

- This gives the number of test situations needed for 1-switch coverage.

To achieve 1-switch coverage, every test situation must be part of at least one test case.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 49

Calculate test situations for a more complex example

To illustrate the calculation of the number of test situations for 1-switch coverage, we also give a more

complex system as an example.

For every state that has outgoing transitions, make all combinations of two consecutive transitions to

create all test situations as shown below:

Test situation 1: State 1 – Event 1 – State 2 – Event 2 – State 1

Test situation 2: State 1 – Event 1 – State 2 – Event 3 – State 3

Test situation 3: State 1 – Event 1 – State 2 – Event 5 – State 4

Test situation 4: State 2 – Event 2 – State 1 – Event 1 – State 2

Test situation 5: State 2 – Event 3 – State 3 – Event 4 – State 1

Test situation 6: State 3 – Event 4 – State 1 – Event 1 – State 2

For this complex state transition diagram example, we also show how to create test cases based on

the test situations.

As described above there are two approaches to creating test cases:

1. Create a test case for every individual test situation (“many short test cases”)

2. Combine as many test situations as possible in one test case (“a few long test cases”)

For this current example, both approaches can be used.

First, we use short test cases, one test case for each test situation):

Test case 1: State 1 – Event 1 – State 2 – Event 2 – State 1

Test case 2: State 1 – Event 1 – State 2 – Event 3 – State 3

Test case 3: State 1 – Event 1 – State 2 – Event 5 – State 4

Test case 4: State 2 – Event 2 – State 1 – Event 1 – State 2

Test case 5: State 2 – Event 3 – State 3 – Event 4 – State 1

Test case 6: State 3 – Event 4 – State 1 – Event 1 – State 2

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 50

Next, we combine as many as possible test situations, this example all test situations can be combined

into just one long test case:

Test case 1: State 1 – Event 1 – State 2 – Event 2 – State 1 – Event 1 – State 2 – Event 3 – State 3

– Event 4 – State 1 – Event 1 – State 2 – Event 5 – State 4

Create physical test cases

To create physical test cases, for each logical test case describe the actions needed to position the

system in the starting state, then trigger each of the consecutive transitions and verify if the resulting

state and the actions performed are according to the expected outcome.

Create test scenarios

Usually every physical test case is a test scenario in itself so there will be little need to create specific

test scenarios.

Note: A State Transition Testing template (excel) is available at www.TMAP.net.

http://www.tmap.net/

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 51

 Condition-oriented testing with MCDC

Modified Condition Decision Coverage (MCDC) makes sure every condition within a decision

determines every possible outcome of that decision. This coverage type is a good combination of

effectiveness (good coverage) and efficiency (not too many test cases).

This coverage type can be used in various test design techniques as shown in this picture:

MCDC is the standard coverage type for Semantic Testing and Elementary Comparison Testing.

Where Semantic testing focuses on testing individual decision points, Elementary comparison testing

is used for testing functionality that consists of multiple decision points.

This text gives an overview of MCDC, Semantic and Elementary comparison testing. Additional in-

depth information can be found on the TMAP body of knowledge (www.TMAP.net).

The following example will be used to explain MCDC, Semantic and Elementary comparison testing:

Example

Last year, QualityLand opened Agile Water Paradise. This is an outdoor water area that, besides a

swimming pool, offers several attractions, such as: the Crazy Conditions River, the Magic Boat

Ride, Shoot-the-chute and the Giant Waves Pool.

Since it is outdoor, this area is only open from May to September, with one exception: at

Halloween (October 31st) this area is also open for a special event, the Super-Duper Masked Water

Party (which was a huge success, last year).

At first, tickets for Agile Water Paradise could only be purchased as an addition to QualityLand

tickets. However, market research learned that selling separate tickets for Agile Water Paradise

would add great business value. Therefore, new functionality must be implemented to make this

possible.

The functionality for the online purchase of separate tickets has been described as follows:

When ordering online, the customer first chooses a date for the visit to Agile Water Paradise. If a

date is chosen on which Agile Water Paradise is closed, the following message should appear:

“Unfortunately, Agile Water Paradise is closed on the date of your choice. Please choose another

date.”

If a valid date is chosen, the customer can enter the number of tickets, QualityLand discount card

number (if applicable) or Student card number (if applicable). The customer can also check the box

for attending the daily Summer Splash Party at the Giant Waves Pool for which an additional fee

must be paid. This additional fee also applies to the Super-Duper Masked Water Party at

Halloween. For the latter, the fee is automatically added when the chosen date is the date of

Halloween.

http://www.tmap.net/

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 52

The price per ticket is calculated as follows:

IF (chosen date ≥ May AND chosen date ≤ September) OR chosen date = October 31st

THEN IF (QualityLand discount card OR Student card) AND number of tickets > 4

 THEN price per ticket = € 15.00

 ELSE price per ticket = € 17.50

 ENDIF

 IF chosen date = October 31st OR Summer Splash Party = Y

 THEN price := price + € 3.50

 IF number of tickets ≥ 10

 THEN discount of 10%

 ENDIF

 ELSE no additional fee

 ENDIF

ELSE message: “Unfortunately, Agile Water Paradise is closed on the date of your choice. Please

 choose another date.”

ENDIF

Application of MCDC

Modified Condition Decision Coverage (MCDC) is a coverage type, from the coverage group

Condition-oriented test design, that ensures that every possible outcome of a condition at least once

is the determinant of the outcome of the decision.

MCDC implies condition coverage (CC), decision coverage (DC) and condition decision coverage

(CDC).

The important concept in this definition is "determinant". If the outcome of the condition changes

(from true to false or vice versa) then the outcome of the whole decision point changes with it.

If a decision point consists of the conditions A, B and C (or more), then MCDC guarantees:

▪ That there is at least 1 test situation in which the outcome is TRUE, owing to the fact that

condition A is TRUE.

▪ That there is at least 1 test situation in which the outcome is FALSE, owing to the fact that

condition A is FALSE.

In other words: changing only the value of A from TRUE to FALSE changes the outcome of the

decision from TRUE to FALSE (and vice versa).

▪ The same applies to all other conditions in the decision point.

MCDC is a thorough level of coverage. The big advantage of this coverage type is its efficiency: if a

decision point consists of N conditions, usually only N+1 test situations are required for MCDC.

Compared with the maximum number of test situations (the complete decision table) of 2N, that is a

considerable reduction, particularly if N is large (complex decision points). This combination of

“thorough coverage” with “relatively few test situations” makes this coverage type a powerful

weapon in the tester’s arsenal.

According to the definition of MCDC, every condition should determine the outcome of the decision

at least once. Then all the other conditions in that situation should be given a value that does not

influence the outcome of the decision. This value is called the “neutral value” and is explained

below.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 53

Neutral value explained

Take, for example, a decision (R), that consists of a combination of two conditions (A, B).

Let’s first have a look at a decision for which the outcome of the decision is only TRUE if both

conditions are TRUE. In other words:

R = A AND B

What MCDC aims to achieve is defining test situations in such a way that the outcome of the

decision changes by only changing the value of A. And then by only changing the value of B. (And

if there were more conditions, this would apply to every condition.)

Note: TRUE is represented by 1 and FALSE is represented by 0.

Let’s concentrate on condition A being the determinant of the outcome: we want to change the

outcome of the decision by only changing the value of A.

Since we only want to change the value of A, we are looking for a ‘neutral’ value for B: the same

value for B in every test situation in which A is the determinant.

Test situation 1: A = 0 AND B = ? → R = 0

If A = 0, for the outcome to be FALSE, B can either be 1 or 0.

Test situation 2: A = 1 AND B = ? → R = 1

If A = 1, for the outcome to be TRUE, B can only be 1.

Hence, the only value for B that we can use in both test situations is 1. So, if the operator is AND,

the neutral value for B is 1.

Now what is the neutral value if the operator is OR? The decision now is only FALSE if both

conditions are FALSE:

R = A OR B

Since we only want to change the value of A, we are looking for a ‘neutral’ value for B: the same

value for B in every test situation in which A is the determinant.

Test situation 1: A = 1 OR B = ? → R = 1

If A = 1, for the outcome to be TRUE, B can either be 1 or 0.

Test situation 2: A = 0 OR B = ? → R = 0

If A = 0, for the outcome to be FALSE, B can only be 0

Hence, the only value for B that we can use in both test situations is 0. If the operator is OR, the

neutral value for B is 0.

Summarized:

▪ Neutral value with AND: 1

▪ Neutral value with OR: 0

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 54

6-step plan for deriving test situations with MCDC

To apply MCDC, every condition in the decision point must be the determinant once. If a condition is

the determinant this means that changing the value of only that condition from TRUE to FALSE changes

the outcome of the decision from TRUE to FALSE (and vice versa). Every other condition must then

be given a neutral value.

There are 6 steps to follow when applying MCDC. With this 6-step plan a table is created that contains

all the necessary test situations. First, the 6-step plan is explained below with a relatively simple

example. After that, an example is given for more complex combinations of conditions.

Let’s have a look at the third decision point from the example:

Example

IF chosen date = October 31st OR Summer Splash Party = Y

THEN price := price + € 3.50

ELSE no additional fee

ENDIF

This decision point here is made up of 2 conditions with the structure: R = A OR B.

The 6-step plan is set out below, resulting in the test situations with which this decision point is

covered by MCDC.

Step 1, 2, 3 and 4

1. Create a table with 3 columns and fill in the first row

2. Add 1 row for every condition in the decision.

Every added row will contain the 2 test situations in which the relevant condition determines the

outcome of the decision point. The condition will determine the outcome "1" once and the

outcome "0" once.

In the first column, enter the description of every condition.

3. Fill in the rest of the cells in the table with a number of dots equal to the number of conditions in

the decision. The first dot in each cell will represent the value of A (1 or 0), the second dot the

value of B (and so on from left to right, in case of more than 2 conditions in the decision point).

Each cell becomes a test situation, that indicates which combination of TRUE/FALSE applies to

the conditions.

4. Enter "1" diagonally in the second column and "0" in the third column.

This is actually entering the determining values for every condition. The meaning of for instance

the cell that belongs to row "A" and column "1" is: "This is the test situation in which the value of

condition A = 1 and that value determines an outcome of the decision of 1."

These first 4 steps result in:

R = A OR B
1

A B

0

A B

A: chosen date = October 31st 1 . 0 .

B: Summer Splash Party = Y . 1 . 0

At www.tmap.net you can find an excel-template in which steps 1-4 have been applied already.

http://www.tmap.net/

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 55

Step 5

At the remaining dots, enter the neutral value that goes with the operator.

In this case, A and B are connected through the operator OR. So for both, the neutral value is 0.

R = A OR B
1

A B

0

A B

A: chosen date = October 31st 1 0 0 0

B: Summer Splash Party = Y 0 1 0 0

Step 6

Score out duplicate test situations.

R = A OR B
1

A B

0

A B

A: chosen date = October 31st 1 0 0 0

B: Summer Splash Party = Y 0 1 0 0

The 6-step plan described above works for every composite decision point, however complex. With

composite decision points in which both "AND" and "OR" occur, care should be taken at step 5

(entering the neutral values). The example below will explain this.

Take the second decision point from the example:

Example

IF (QualityLand discount card OR Student card) AND number of tickets > 4

THEN price per ticket = € 15.00

ELSE price per ticket = € 17.50

In short, this can be written as: R = (A OR B) AND C.

After the first 4 steps, the table of test situations looks as follows:

R = (A OR B) AND C
1 (€ 15.00)

A B C

0 (€ 17.50)

A B C

A: QualityLand discount card 1 . . 0 . .

B: Student card . 1 . . 0 .

C: Number of tickets > 4 . . 1 . . 0

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 56

Now the neutral values should be entered for each of the 6 situations. With the top 2 situations (A is

the determining value), the neutral values can immediately be determined: B is connected to A via

the operator "OR" and should therefore be given the neutral value "0". C is connected with A via the

operator "AND" and should therefore be given the neutral value "1".

The same applies to the middle 2 situations (B is the determining value). However, for the bottom

situations (C is the determining value) an interim step is necessary: it is not A that is directly

connected with C, nor is it B. It is the combination "(A OR B)" that is connected with C, via the

operator "AND". Thus "(A OR B)" should assume the neutral value of "AND", and that is "1". In other

words: (A OR B) = 1. For the values for A and B there are 3 possibilities of achieving this, i.e. "1 1",

"1 0" or "0 1". Only 1 of the 3 need to be selected to reach the goal of MCDC. In principle, it does

not matter which. The only difference in the 3 possibilities is that in selecting "1 0" or "0 1" a test

situation can be scored off, while that is not possible with the choice of "1 1".

If the neutral value of "0 1" is selected for (A OR B), then after the 6 steps, the table looks as

follows:

R = (A OR B) AND C
1 (€ 15.00)

A B C

0 (€ 17.50)

A B C

A: QualityLand discount card 1 0 1 0 0 1

B: Student card 0 1 1 0 0 1

C: Number of tickets > 4 0 1 1 0 1 0

This phenomenon, that several possibilities exist for neutral values, always occurs in cases of an

operator between brackets, and if it’s an OR you can select 1 0, 0 1 and 1 1.

The number of possible selections differs if the decision point is like this (the AND and OR have been

swapped):

R = (A AND B) OR C
1 (TRUE)

A B C

0 (FALSE)

A B C

A: condition A 1 1 0 0 1 0

B: condition B 1 1 0 1 0 0

C: condition C 1 0 1 1 0 0

Now the values for A AND B in the last line can be 1 0, 0 1 or 0 0. But choosing 0 0 would result in

an extra test situation. So in reality 1 0 and 0 1 are the best choices. And 1 0 is the easiest choice

because this is just filling in the neutral values for AND (1) and OR (0).

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 57

 Semantic Test

The semantic test is a test design technique for testing the validity of data input using semantic

rules for the relationships of the data on the input device and other data, for example in the

database, in the system or on the input device.

Note: The semantic test is often executed in combination with the syntactic test.

Test approach: Coverage-based – condition oriented

Test variety: Validation test, Functional testing, Security testing

Test basis: The test basis consists of the semantic rules, being single decision points,

that specify what a data item should comply with – in relation to other data –

in order to be accepted by the system as valid input. Semantic rules may be

established in various documents, but are usually described in:

▪ Functional specifications of the relevant function or input screen

▪ The business rules that apply to the functions overall

Coverage type: Modified condition decision coverage (MCDC) (other coverage types possible,

see below)

The coverage type used is modified condition decision coverage (MCDC). But other coverage types

can be applied to the Semantic test as well. For instance:

▪ Decision points: multiple condition coverage (MCC)

With this, the possibilities within the decision point can be tested even more thoroughly.

▪ Boundary Value Analysis

With this, the possibilities within the decision point can be tested even more thoroughly.

▪ Decision points: condition decision coverage (CDC)

For a lighter variant.

With the semantic test, user-friendliness aspects can be tested as well, by assessing the messages

that occur in invalid situations thus:

▪ Are they understandable and unambiguous?

▪ Do they offer clear indications of how the invalid situation can be resolved?

Below, the Semantic test is explained step by step on the basis of 2 of the generic steps of test

design:

1. Identifying the test situations

2. Creating logical test cases

Setting up a semantic test is very straightforward: each semantic rule is tested separately. Each rule

leads to one or more test situations and each test situation generally leads to one test case.

To explain the Semantic test, we have a look at the example again:

Example

If the customer enters a QualityLand Discount Card number or a Student Card number, an extra

check takes place. The customer needs to enter the ‘valid thru’ date of the card to check if the card

is still valid on the chosen date of visit. Furthermore, it is checked if the entered card number

exists.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 58

IF ‘valid thru’ date ≥ chosen date AND (Discount card number exists OR Student card number

 exists)

THEN message: "Card accepted"

ELSE message: "Card not accepted"

ENDIF

1 – Identifying test situations

A semantic rule is a decision point that consists of one or more conditions connected by AND and/or

OR. The test situations are derived by applying modified condition decision coverage (MCDC).

A AND (B OR C)

1

“Card accepted”

A B C

0

“Card not accepted”

A B C

A: ‘valid thru’ date ≥ chosen date

 1 0 1 (1)

(or 1 1 0, or 1 1 1, but 1 1 1

gives a logical contradiction2)

 0 0 1 (3)

(or 0 1 0, or 0 1 1, but 0 1 1

gives a logical contradiction)

B: Discount card number exists 1 1 0 (2) 1 0 0 (4)

C: Student card number exists 1 0 1 1 0 0

2 – Creating logical test cases

The test situations from step 1 are directly the logical test cases:

Logical test cases

 TC 1 TC2 TC3 TC4

 ‘Valid thru’ date
≥ chosen

date

≥ chosen

date

< chosen

date

≥ chosen

date

 Discount Card number n/a exists n/a
does not

exist

 Student card number exists n/a exists n/a

Predicted result: Accepted Accepted
Not

accepted

Not

accepted

2 The combination B = true and C = true gives a logical contradiction: discount card number and student card

number cannot be entered simultaneously. Therefore this combination may not occur in the test situations.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 59

 Elementary Comparison Test

The elementary comparison test (ECT) is a thorough technique for the detailed testing of

functionality.

Test approach: Coverage-based – condition oriented

Test variety: Functional testing

Test basis: Pseudo-code or a comparable specification in which the multiple decision

points and functional paths are structurally worked out in detail

Coverage type: Modified condition decision coverage (MCDC) (other coverage types possible,

see below)

The ECT aims at thorough coverage of the decision points and not at combining functional paths.

The coverage type used is modified condition decision coverage (MCDC) to achieve an optimum

combination of effectiveness (good testing) and efficiency (limited number of test cases).

If there is a need for higher coverage, other coverage types can be applied with ECT as well.

For example:

▪ Decision points: multiple condition coverage (MCC)

▪ With this, the possibilities within the decision points (specifically selected, if necessary) can be

tested even more thoroughly.

▪ Boundary Value Analysis

▪ With this, the possibilities within the decision points (specifically selected, if necessary) can be

tested even more thoroughly.

The ECT is a preferred technique for testing very important functions and / or complex calculations.

Below, the ECT is explained step by step on the basis of 2 of the generic steps of test design:

1. Identifying the test situations

2. Creating logical test cases

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 60

To explain the ECT, we have a look at the example again:

Example
The price per ticket is calculated as follows:

IF (chosen date ≥ May AND chosen date ≤ September) OR chosen date = October 31st

THEN IF (QualityLand discount card OR Student card) AND number of tickets > 4

 THEN price per ticket = € 15.00

 ELSE price per ticket = € 17.50

 ENDIF

 IF chosen date = October 31st OR Summer Splash Party = Y

 THEN price := price + € 3.50

 IF number of tickets ≥ 10

 THEN discount of 10%

 ENDIF

 ELSE no additional fee

 ENDIF

ELSE message: “Unfortunately, Agile Water Paradise is closed on the date of your choice. Please

 choose another date.”

ENDIF

1 – Identifying test situations

The test basis consists of pseudo-code or a comparable formal function description which can be copied

directly in this step. If not, an extra activity should be carried out in order to convert the existing

specifications into pseudo-code.

The decision points in the pseudo-code are provided with unique identification. It is usual to use the

codes D1, D2, etc. for this (or D01, D02, etc. if there are many decision points).

Example
D1 IF (chosen date ≥ May AND chosen date ≤ September) OR chosen date = October

 31st

D2 THEN IF (QualityLand discount card OR Student card) AND number of tickets > 4

 THEN price per ticket = € 15.00

 ELSE price per ticket = € 17.50

 ENDIF

D3 IF chosen date = October 31st OR Summer Splash Party = Y

 THEN price := price + € 3.50

D4 IF number of tickets ≥ 10

 THEN discount of 10%

 ENDIF

 ELSE no additional fee

 ENDIF

 ELSE message: “Unfortunately, Agile Water Paradise is closed on the date of your choice.

 Please choose another date.”

ENDIF

Per decision point, modified condition decision coverage (MCDC) is applied in a separate table. The

resulting test situations are numbered. The combination of this number and the decision point

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 61

provides a unique identification of the test situations (such as D1-1, D1-2, etc.). The numbering

begins with the test situations in column "1" (true) and then those in the column "0" (false).

D1: (A AND B) OR C
1 (go to D2)

A B C

0 (message & to end)

A B C

A: chosen date ≥ May 1 1 0 (D1-1) 0 1 0 (D1-3)

B: chosen date ≤ September 1 1 0 1 0 0 (D1-4)

C: chosen date = October 31st

1 0 1 (D1-2)

(or 0 1 1, or 0 0 1, but both

give logical contradictions3)

1 0 0

D2: (A OR B) AND C
1 (€ 15.00)

A B C

0 (€ 17.50)

A B C

A: QualityLand discount card 1 0 1 (D2-1) 0 0 1 (D2-3)

B: Student card 0 1 1 (D2-2) 0 0 1

C: number of tickets > 4 1 0 1
1 0 0 (D2-4)

(or 0 1 0, or 1 1 0)

D3: A OR B
1 (+ € 3.50 & to D4)

A B

0 (to end)

A B

A: chosen date = October 31st 1 0 (D3-1) 0 0 (D3-3)

B: Summer Splash Party = Y 0 1 (D3-2) 0 0

D4: A
1 (discount 10%)

A
0 (no discount)

A

A: number of tickets ≥ 10 1 (D4-1) 0 (D4-2)

3 In D1, the combination A = false and B = false gives a logical contradiction and therefore this combination may

not occur in the test situations: date cannot be simultaneously lower than May and higher than September. Also,

the combination B = true and C = true is not possible: date lower than September and date = October 31st is
also not possible as a combination.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 62

Detailed elaboration of the test situations:

Test situations D1 D1-1 D1-2 D1-3 D1-4

 chosen date ≥ 05, ≤ 09 31-10 < 05
> 09,

≠ 31-10

Test situations D2 D2-1 D2-2 D2-3 D2-4

 QualityLand discount card Y N N Y

 Student card N Y N N

 number of tickets > 4 > 4 > 4 ≤ 4

Test situations D3 D3-1 D3-2 D3-3

 chosen date 31-10 ≥ 05, ≤ 09 ≥ 05, ≤ 09

 Summer Splash Party N Y N

Test situations D4 D4-1 D4-2

 number of tickets ≥ 10 < 10

This elaboration is also helpful with identifying the mutual exclusive test situations (see next page).

Before these test situations are combined into logical test cases, two intermediate steps are taken:

▪ Identify the possible ‘chains’ of test situations

▪ Identify mutually exclusive test situations

Identify the possible ‘chains’ of test situations using a graph

The creation of logical test cases can be made easier with the aid of a graphic representation of the

possible ‘chains’ of test situations: a graph.

In this graph each decision point and the end point is represented by a circle and each test situation

by a line that goes from one circle to another.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 63

Graph for the example:

A logical test case runs through the graph from beginning to end, forming a chain of test situations.

The graph also gives insight into the minimum number of test cases necessary to cover all the test

situations. This is determined by the maximum number of parallel lines in the graph (in this example

this is 6).

Identify mutually exclusive test situations

A logical test case should not contain "mutually exclusive test situations", for that makes the test

case inconsistent and therefore inexecutable. Therefore it is wise to:

▪ Investigate which parameters (or closely related parameters) occur in more than one decision

point, and (per parameter) identify which values are mutually exclusive. The detailed elaboration

of the test situations (see previous page) is very helpful with this.

▪ Sum up the combinations of mutually exclusive test situations.

Mutually exclusive test situations in the example

The parameter "chosen date" occurs in the decision points D1 and D3. This leads to the following

mutually exclusive test situations: D1-1 cannot be combined with D3-1; D1-2 cannot be combined

with D3-2 and D3-3.

The parameter “number of tickets” occurs in the decision points D2 and D4. This leads to the

following mutually exclusive test situations: D2-4 cannot be combined with D4-1.

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 64

2 – Creating logical test cases

A test case runs through the functionality from start to end and will come across one or more

decision points on its path. With each decision point, the test case will test one of the defined test

situations. Every test situation must be covered by at least 1 logical test case.

The logical test cases are created with the aid of a matrix. The rows contain the test situations and

the columns contain the logical test cases. With each test case, it is indicated by one or more

crosses which test situations should be tested by this test case. This matrix also serves as a check

on the complete coverage of test situations.

The columns "Value" and "Next" have been added. These indicate for each test situation what the

outcome of the decision is (directly obtainable from the tables in step 1) and to which subsequent

decision point (or end of process) this leads (directly obtainable from the graph). This helps to

prevent the tester from placing a cross at a test situation where the test case does not go.

Furthermore, mutually exclusive test situations have to be taken into account (this means you have

to check whether some test situations cannot be combined in one test case).

Tip: the sooner you start with test situations that can’t be combined with certain other test

situations, the more not yet covered test situations are still available that they can be combined

with.

Logical test cases

Test

situation
 Value Next TC1 TC2 TC3 TC4 TC5 TC6

D1-1 1 D2 X X

D1-2 1 D2 X X

D1-3 0 end X

D1-4 0 end X

D2-1 1 D3 X

D2-2 1 D3 X

D2-3 0 D3 X

D2-4 0 D3 X

D3-1 1 D4 X X

D3-2 1 D4 X

D3-3 0 end X

D4-1 1 end X X

D4-2 0 end X

Predicted result: 21.00 16.65 msg msg 15.00 18.90

TMAP: High-performance quality engineering – syllabus

Public. Copyright © Sogeti 2024. All rights reserved 65

A test case can be worked out in both a logical test case and a physical test case. In the example

above the result is described as logical test cases.

A tester may execute a test based on the logical test case. However, this requires that the tester

finds or creates test data at the time of test execution. Normally, executing based on logical test

cases only works well if the execution is done by the same person that created the logical test cases.

If someone else, or in case of test automation a machine, is executing the tests, each logical test

case must be elaborated into a physical testcase.

Logical test case worked out as a Physical test case – example

For instance logical test case 2 (D1-2, D2-1, D3-1, D4-1) can be worked out as a physical test case

as follows:

▪ Chosen date: October 31st

▪ QualityLand discount card: yes

▪ Student card: no

▪ Number of tickets: 10

▪ Summer Splash Party: no

Predicted result: (€ 15.00 + € 3,50) -/- 10% = € 16.65

This syllabus is maintained by the members of the TMAP Special Interest Group and the Sogeti

Academy. You can contact the Sogeti Academy in the Netherlands at academy.nl@sogeti.nl.

About Sogeti

Part of the Capgemini Group, Sogeti operates in more than 100
locations globally. Working closely with clients and partners to take
full advantage of the opportunities of technology, Sogeti combines
agility and speed of implementation to tailor innovative future-
focused solutions in Digital Assurance and Testing, Cloud and
Cybersecurity, all fueled by AI and automation. With its hands-on
‘value in the making’ approach and passion for technology, Sogeti
helps organizations implement their digital journeys at speed.

A global leader in consulting, technology services and digital
transformation, Capgemini is at the forefront of innovation to
address the entire breadth of clients’ opportunities in the evolving
world of cloud, digital and platforms. Building on its strong 50-year
heritage and deep industry-specific expertise, Capgemini enables
organizations to realize their business ambitions through an array
of services from strategy to operations. Capgemini is driven by the
conviction that the business value of technology comes from and
through people. It is a multicultural company of almost 220,000
team members in more than 40 countries. The Group reported 2019
global revenues of EUR 14.1 billion.

Visit us at www.sogeti.com

This document contains information that may be privileged or

confidential and is the property of the Sogeti Group.

Copyright © 2022 Sogeti.

mailto:academy.nl@sogeti.nl
http://www.sogeti.com/

